< T SR o gy

-

L]

s

o

cararnnr o RCETIA

AS

401 724

ILU b

(33

TRANSLATION

IHAMSACTIONS OF THE PHYSICS INSTITUTE

Edited By
D. V. Skobel'tsyn

FOREIGN TECHNOLOGY

DIVISION

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE
OHIO



Best
Available
Copy



Academiya Nauk SSSR
Fizicheskgy Institut im., P. N. Lebedeva

TRUDY FIZICHESKOGO INSTITUTA

Vol. X

Izdatel'astvo Akademii Nauk SSSR
Moskva 1958



@ rr——

FTD-TT-_62-9s8/1+2

UNEDITED ROUGH DRAFT TRANSLATION

TRANSACTIONS OF THE PHYSICS INSTITUTE
EDITED BY; D. V. Skobel'tsyn

English Pages: 244

S/3851

THIS TRANSLATION IS A RENDITION OF THE ORIGI
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT, STATEMENTS OR THEORIES
ADVOCATEDOR IMPLIED ARE THOSE OF THE SOURCE
ANDDO NOT NECESSARILY REPLECT THE POSITION

OR OPINION OF THE POREIGN TECHNOLOGY Dt
VISION.

PREPARED BY,

TRANSLATION SERVICES BRANCH
FOREIGN TECHNOLOGY DIVISION
WP-AFD, OMIO.

FTD-TT~ 62-958/1+2 )

Date 21 March 19 63




Editor-in—Chief 0.0 l‘ ot e : ‘ .
In Memoriam S.Z. Belen'kiy* e s e e, ek
Contribution-to. the Theory, of Flow of” Supersonic
s 'Past a*Wedge S 2. Belen'kiy~
g 1. Intréduction’s. tiii emeTIE
2. Oblique. Compression Shock o'W
§ 3. Flow:iofi Supersonic Stream Past.a
References . ro * o ..'o et e ' "' o..'o e o
Hydrodynamic Equations with Account or Radiation
SQZQ" &len'kiy e e o o LI ‘e .
References “wrel o leme e o e e p

o+ O
L]

f@edge

“"8

Principles or Proton»Synchrotron Theory M.S. Rabinovich

FOI‘eWOI'd -w'" :. ;".'.'e e" o @ c,',‘ e, o0
LiBt Of Symbols;g- 'o;. e' : “.”‘o ' . . ‘e o
Chapter One. - Radfal-Phasq.Motion of Particles
1. Introduction‘v-. "o faice e s e..e ‘ -
2. Equilibriwn"orbit LIARY ] g e e o ® o‘ K ’0 -

3. Derivation Yo Phase Equationh’” ..;?'; .
L. Solution.of*Phas® E«!uation in;the ‘Fir,

5. Solution of Phase Equation in Se%fnd

Approximation\. X .;;-..---3 .

W WON O ONOHRONDN

Acceler§t10n4infMultiplQResonance w7,

7.
Chapter Two. Fastmoéhfllations of Particles i o@gizer e
§ lo Introducti’ont"’"? - . et e -'o,.. "ﬂe o’..\‘.:. ‘ov* . -,o o

Approximationf~9, v . B S 6
A

6. Phase: Equationﬂwhen the. Magnetic Field Spills'
over,intd thérinear Sections;.pi.... .:. e

. ‘-fo.‘. LI

e o o @
e & O o

_o ‘o

§ 2. Calculationnoﬁ4Par cle Trajectogiesiin an .’

Idedl’: Accelerator th Slots X, fyea ey et

"..!o. \

§ 3. Some. Singularities of InJectionqindan;i;'

Accelerator.with Slotted Magnet:'i- n,.iaﬁ.h.

§ 4. Calculation,” ofiPartic® Trajectories:ui

-

(Y
. .
o

® e,8 o o o

FLE RN

D

- A%y,
; ‘{ .- A

Accp e “a*Magnetic Field. in“the~ Linear%r»

Secti AR o..'of;,_o’o e o e o . 0'0"0 o

Chapter Three;gEffectdof Deviation of the Magnetic £

'Fleld from Theoretical on the Motion.of

the Particles . ¢« ¢« ¢ o o o o
Introduction . . . o o
Calculation of the Perturbed Orbit .

#(.A)I\)l-'

Conclusion . . . « ¢ o o s o @
Chapt
Slotted Magrle t L] L] [ ] L] L] . L) L ] L ]
Introduction .+ . . e o o o & .
Generalization of the Averaging Method

Oscillations . . .« & e s e o o o o
Resonance when n = 0, 84 ¢« o o s o s
Parametric Resonance at n = 0.79 . .
Significance of Resonances of Fast

Osclllations to the Operation of the

- 11 -

ONONRO? KON (D NN

O\\TIF wnH

Motion of Particles in Vertical Direction

r Fbur. Resonant Phenomena in Accelerator with

Adlabatic Variation of the Amplitude of Free

‘5

‘80-* '
~>"90




. Accelerator . .'o * e :'. . o - E
*§ 7. Different. Cases of Resonance with Slow“‘- e
Ph&se Oscii&tions .. o“, . o' e .,n‘.""'oj",’ ~.":'
§ 8. Calculation of the Passage, Through.aRe;sbna;.'ripec i g_‘;_.‘?' P
in the Linear ApProxXiMAtION: .:-siGisd eesizeme s £l S o o
§ 9. Calculation of Passage Through Resonance“withz o f‘ ot v
Account of- the Nonlinearity of the«" P ‘""’" y *"*t‘ e b
0scillations iyl e ta
Cha.pter Flve. InJection \'I'heory fed .-

,11&5 t'.L:

P R L R A T

lo IntI‘OdUCtion :‘fo": A ’. ". “l o[l [y o? o'io ! .‘» oz 4 ‘. oK.
$. 2. Fundamental- Assumptions Made mring the f“"’i’ ey Moy
: Calculations,, b“.o . . . o’ . -.. ..r o ~o‘ o)“o.‘".’b- L] \4164 .‘“' \;". '
§ 3. ~Capture of .Particles Daring “the First R *as VR Sy el
Injection Stage .. . S ..x....,,.. Yo ,.?....r167 .I. ‘. (e ® ]

--i_-': § l{ Di'stribution of- the Partic\les amongcrtheo o
+10% illation‘ Amplitudes after the ,Fi-rst\’ an Eoy

‘S .,. “ '-r » ﬁection Stage o o o o .-c ’- o:l o' o& g‘.‘... 6"” ¥
§ Bt Transient-‘Mode. with Accurate Switching ;on¥thei @ ate:

"Acce'lerati'ng tFleld for a Monoenergetic,, A.;T“',{,"'";;,"""“’.'
\" -

.sz:tic-le"Be TRRPIS I EACT Lo RIS ¥
- § 63> TRare et e with Error: in- 'I‘urni-ng-.on-othe, ,..3-.\: §5

. b ~‘-"~§.'.?.‘.'fa --oAcﬁcel'erating Fleld and for:a. Nonmon
o gPaftilciiciBean. . . . Cvaw,
ded)oefficient at In.ject:i’on‘
Chapter‘Six.. St n 4 ocusing « o oi
S e 16Tt duction . . :
) pE‘LIOZL»a.tions and Stability Region’- .,
[} 2 4

LAt
%

3% ﬂ':. 3T ‘Particle 'I‘ra,jectory :-
.,_ ."A'zimuth Af°Asymmetry o o & v s e
5. Tnstar a.ne S' Orblts ¢ oo
2 ThegPHase, Equation « e
"-References--..-.:’.f.’. eteie e e 4
LRy X St R

et
L IR
-y

v

.“ = ‘ L]

V)

- 111 -



o

@3 ove
Qg -
- @,

4 o!'- 'o .
1) ..a'l

2 X
wee T e

o aw

‘,,-n....v!-,g
of 80

e .

d
1A

]

(4

g 2 A
aw

..:
*Dhet

'.
ay
3

L
... "

IN MEMORIAM .

SEMEN ZAKHAROVICH BELEN'KIY .

The well known theoretical physicist, head of the Theoretical Divi-
'l.. =

sion of‘Physics Institute, Doctor of Phyulcal and Mathematical Sclences

I/n- &1

Semen Zakharovich Belen'kiy died on 21 September 1956.

"~r'.

”Semen Zakharovich was born in Moscow in 1916. Even before belng

graduated 1n 1938 from the Physics faculty of the Moscow State University

aw-

he begenkscientific work 1n the fleld of theoretical physics. For many

v

yeafs“the principal place in his activity was occupled by resdrch into

proéesse ‘occurring in cosmic rays. The results he obtained in this

field expounded‘in his monograph "Cascade Proceoses in Cosmic Rays"
(1948) and subgequentlv developed in many later articles, were highly
praised and unilversally acknowledged in the world's literature. Semen
Zakharovich also obtained original and Interesting results in the field

of hydrodynamics. He devoted much effort to the solution of important

applied problems.

FTD-TT62-058/1 +2



© 4t e,

In 1954 a new stage began in his sclentific activity, in that he
embarked on research in the nuclear collisions of high-energy particiea.
This question, as is well known, 1s the center of attention of modern
physics and is at the same time one of the most difficult problems. But
here, too, Semen Zakharovich discovered new possibilities and arrived
at important conclusions which are attracting ever-increasing attention
both here and abroad.

Semen Zakharovich made far-reaching plans for research on the theory
of collisions and multiple particle production, and this problem occupied
him until his last days.

His services were rewarded with an Order of Lenin, the Papaleksi
Prize, and the Stalin Prize. He took an active part in social life and
was a member of the Communist Party of the Soviet Union since 1939.

Semen Zakharovich paid much attention to the training of youth. *
The work of a group of graduate students and the preparation of many
dissertations were carried out under hils guldance. As a leader he was
most exacting and had a tendency to allow independence of work. He was
able, without restricting the students' initiative, to help find the
correct way with a few remarks.

Semen Zakharovich loved sclence, devoted all his efforts to 1it,
was highly active and only a few knew how sick he was during the last
years.

Hls assoclates, co-workers, and graduate students willl never forget
his high sclentific p;inciples, clarity of thought, directness of expres-
sion, and human qualities.

His untimely death struck particularly hard those who knew him clo-
sely and who marched on his side rqr many years. It is difficult to be-
lieve that we shall never see him again.

—~ Staff Members of the Theoretical Division

FTD-TT-62-958/1+2 -2 -
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FROM THE EDITOR

The present volume contains two papers by S 2.: Bel '"kiy"The'

ga.i
pgblishnthem&: E

£
3

SRl
The sclentiflic activity of S.2Z. Belen'kiy, which*was only briefly'ﬁ

,.a\ ’

kRS ‘4 .
touched upon in the obituary in the present volume;*was'delineated"utit %

K
in detall in the Journal "Uspekhi fizicheskikh nauk" Torﬁ19

l .
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:éONTRIBUTION TO THE THEOR¥ 0F3FLOW~

by ¢t,' ol Cy

5 YO +SUPERSONIC GAs“‘PAs'r. A'-WEDGE“:,, 3
: | .‘ . ﬁ’ “. ‘4
S.2. Be-fe

JW& g
Y I

‘,I.‘ e ¢

§l.wINTR6DUCTION\,W»~':éaj g;i%é}’t . .u;"..,.:.:si o

*,i;It is.impossiblewto’construct:ahcontinuou% solugionhfor the rlow. ;

oi.‘.;‘ai.' “stream of gas.at‘\sulpersonic s'p'é:'é:d jp"a.'st.ba body“.t:iIn‘deed, .if the

rront\edge of thesbodyhis rounded ofrww;he V9£§;¥¥y”5c“ine edge itself
LT, : ,,A‘u\,‘t *

should’equal zero. At the same time, a small Jet‘of gas fmpinging on

the‘bodyﬂshould spread apart at the- front edge But iﬂ.the velocity of
Su . - S N 3 zw .,
the.gas exceeds the velocity of sound, then upon expansion of the Jet,

as follows from the Bernoulll equation, ‘the velocity “of the gas in-

.3 - 1. .
creasesnand therefore cannot vanish.: In order for the flow past the

body tO'become possible, a discontinuity surface must arise in front

an e -

of the body, a compression shock, the presence of which makes it pos-

sible.to ‘satlsfy the boundary conditions on the surface of the body.

:«If the edge of the body 1s sharp, then the differential equations

or gasdynamics lead to multiple-~valued solutions in a definite region
of space (one point in space corresponds to several values of the ve-
locity), which 1s physically meaningless. Therefore a compression shock
must be produced in front of the body, away from the sharp point, even
at large tip angles.

Even 1f the contour of the body is such that the tangent to the
contour at the forward point is parallel to the velocity of the incoming

stream, and further on the contour‘bends smoothly, a unique solution may.

nevertheless be impossilble and a compression shock arlses at a certain

»
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.even 1n the 1nvestigation of thils very- simple problem we encounter the

so-called "duality" of the solutions of gasdynamics for the®discontinui-
.ti;; a duality which has been subjected to many discussions.

If by virtue of the streamlining conditions, the supersonic
éééégm must turn through a certain angle which is smaller than 180°,
tﬁéé; according to the equations of gasdynamics, for specified stream
véigcity and turning angle, such a turn can be realized in two ways:
1);gn oblique compression shock can be produced nearly normal to.the
veiopity of the incoming stream, and the velocity behind this shock, as
will be shown below, 1s afhays smaller than the velocity of sound; 2)
an oblique shock farther away from the_vertical than in the first case
can arlse, and the velocity behind 1t becomes subsonic or supersonic,
depending of the velocity of the stream and the turning angle, but al-
ways larger than in the first case. In principle, both flow modes are
possible. Usually the problem of the duality of the gasdynamic solution
18" considered applied toflow past a wedge, although of course it has é
moré‘generai significance.

Experiment has shown that in flow past a wedge the mode realized
corresponds to a'high veloclty behind the shock.

To explain this phenomenon theoretically, Roy [1] proposed that
such flow can occur and be connected only with a minimum change in
entropy, while Epstein [1] proposed to sfart from the minimum principle

for the Hamiltonlan. These criterla are quite arbltrary and can there-

-5 -



fore not be regarded as convincing. Levinson [2] considers the stabi-
1ity of oblique shocks by the small oscilllation method. The author
reaches a conclusion that' the only stable shocks are those for which
the continuous velocity component parallel to the discontinuity (tan-
gentlal) exceeds the velocity of sound ahead of the shock. It is easy
to see that this conclusion contradlcts the invariance of the gasdyna-
mic equations under a Galilean transformation. Actually, it is always
possible to change over to a coordinate system in which the tangential
component of the veloclty 1s smaller than the velocity of sound or is
even equal to zero. It 1s obvious that in such a coordinate system the
stabllity conditions cannot change. Thus, Levinson's work seems to be
incorrect, since it contradicts the Galilean principle.

As regards the stabllity of compression shocks against small per-
turbations, this stability was investigated by Landau [3] for a straight
shock, and it was shown that straight shocks are always stable (in ag=-
reement with experiment). This conclusion is valid, of course, for
oblique shocks too.

In the case of flow around a wedge, the discontinuity has a sharp
point, coinciding with the sharp point of the wedge. This case, strict-
ly speaking, calls for an additional investigation of stability, which
80 far has not been performed by anyone. However, on the basis of the
conslderations which we shall develop in Section 3, it seems to us that
such an investigation would not lead to new results.

Let us point out‘here that the problem of flow past a wedge, in
the formulation used for its analysis so far, is of no interest from
the physical point of view. One usually investigates a flow past an in-
finite dihedral angle and the solution obtalned thereby is dual.

Any real body 1s filnite, and the .,2lidity of =he abstraction em-

1,

o zellzvs TonatT Lt ls sufficlent

"n
10

2 a.. P sea
- et L] e -y LA

.. - L3 -
’—QJ - ml .
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to refine the formulation of the problem and to consider flow past a
finite body, having a wedge-like end, in order to get rid of the dual-
ity of the solution. The necessary requirement that the boundary condi-
tions be satisfieq should lead to a unique cholce of one of the possible
solutions.

The derivation of a definite solution in the case of flow past a
wedge does not mean at all that in all cases pf turning of a supersonic
flow this 1s precisely the solutlon obtained. To the contrary, we can
point out examples in which a solution is obtained, for which the velo-
city behind the shock 1s smaller than the velocity of sound. Thus, in
flow around a body with a rounded front end, the shock produced in front
of the body bends in such a way, that the velocity behind 1t 1s smaller
than the velocity of sound in some regions and larger in others.

It 1s obvious that by formulating a physically sensible problem
concerning the flow around a body of arbltrary form, with account of
conditions on the surface of the body and at infinity, we should always
obtain a unique solution of the problem. At the present time unfortun-
ately we cannot prove thils premise as a rigorous mathematlcal theorem.
§2. OBLIQUE COMPRESSION SHOCK

Let us present a few relations from the theory of an oblique com-
presslon shock.

We shall designate with the index 1 quantitles pertaining to the
stream ahead of the shock, and with the index 2 quantities pertalning
to the stream past the shock. The fundamental equatlions of gasdynamics,

as applied to an oblique shock, are wrltten in the following fashion:

P, =0t (1)
Pr— P, =V, (s, —=Vu,) (2 )
[
2 3
iy =iy =, (3)

-7 -



Here p 1s the gas density, p the pressure, i the heat runction,5
io the . "total" ‘heat function, v, the velocity component normal to the

3fshock, vt the velocity component parallel to the shock, this component

A

» R
008 T8 Bk s wiee v v e

_‘In Figure 1 the absclssa axis cﬁ&ncid

‘o s 'q ﬂ

e“fwith~ h ,direction of the

\,r.

., -lq "'

'thow ahead of the shock, OA 1s the Mach;line'o'athe flow past the shock, gjm

el
;efi

;B is,the angle between the shock and the;d\;ec;

jthe shock.

thel‘enerality of the results obtained ;and then 1 = y/(y - 1)(p/p),

;where y 1s the ratio of the specific heat at constant pressure to the

L specific heat at constant volume.

3

-
-

2
L3

N )

Y

.
at

We introduce also the "eritical- velocity" c*, namely the stream ,

velocity equal to the local velocity of sound

c e dp - awteR

' _20=1; . ;
® c*t = 11_4,;.. - (4) :
Tne local velocity of sound c, defined-by”the relation ¢° = dp/(dp), 1s

cl_]___.(co’ : L_v') E . o .(5)

)
(fo: c=v, Vv=c*) .
It is seen from (5) that the velocity of a supersonic stream can-

not exceed v .. = ,/(ywl)/(y_l) cH*,

Let us show that if the veloclty past the shock exceeds the velo-
city of sound, then the discontinuity line 1s always situated between
the Mach lines for the flows ahead 'of and behind the shock, and the

‘)

discontinulty line makes a larger angle to the x axis than the Mach

-8 -
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line for the flow ahead of the shock, 1i.e.
.,>p>.,—9. (6)

Eliminating p.and p from (1),(2), (3) and
using the: relation (4), we obtain

, 3’-."~=°"—ﬁ“{”:="'- (7)

. .-
It is obvious that if Vi >c:, then v <°t
| \ 1 n, Ut

Fig. 1
and vice versa. From (1) it follows that for a shock we have i >vn
' 1 "2
and consequently Vn >c:. Let us set up the difference cg - vﬁ . Since
1 1
in accordance with (5) and (7)
— 41/ o8 -

‘?—Lr(‘. —h’:)'

we get
—1+i,.
=t~ (8)

If v_ der, th
vnl ¢y, then vn1>°1'

An analogous relation occurs also for the flow past the shock:
- ....1_'.‘;1 (c —) (81)

*
Since vn2< Cis WE get Vn2< Coe

Therefore, the normal component of the velocity ahead of the shock
Always exceeds the veloclty of sound, while the normal component of the
velocity past the shock is always less than the veloclty of sound.

From Figure 1 we get
-inﬂ——;. sin(3+v)———-

On the other hand, the angles between th Mach lines and the correspond-

ing velocity directions (the Mach angles) are

-9 -



.
lln:,=-%l. sing== L.
' [}
Since I > vna, we get a5, > B, and since 2 < vnl, we get B > ai—o,

q.e.d.
By transforming the relations (1) — (3) we can find a connection
between the veloclity components Voy and v2y past the shock for given

volumes of v1 and c*:

2 P *
_'l"";--'u (9)

This curve has the form shown in Figure 2. The point A corresponds to
the straight shock at which v2y = 0, and Vo, = c*2/(vl), where the
point B corresponds to the absence of a shock(v2y =0, v, = vl). The
intersection of the line drawn from the origin at angle ¢ with the
curve (9) makes 1t possible to determine the velocity occurring past
the shock. We see that for a glven angle of turn ¢ three values of

the veloclty are possible. One of them, F'', corresponds to a velocity
past the shock exceeding the veloclty ahead of the shock, that 1s, as
follows from equation (1), it leads to a rarefaction shock. According
to Zemplen'é theorem, such shocks cannot be realized, so that the en-
tire branch of the curve to the right of the point B has no physical
meaning. The two other values of the velocity (F and F') are in princi-
ple equally valid. The polnt F' corresponds to the larger velocity past
the shock, and F to the smaller velocity. The discontinuity line will
make a smaller angle with the abscissa axls if the flow past the shook
has the larger veloclty. Indeed, let us write down the condition that
the veloclty component parallel to‘the direction of the shock remain

continuous (Fig. 1):

(@)

¢

N ]



v, c08 (8- 9) =1y, cos (3 +¢) 4
+ Vy 8in 3+ ¢).

Hence,

°8(9+9)-3*{7'¥

B+a=(Z—1)g  (10)

For specifled vy and ¢ the angle B + ¢

Fig. 2 will be the smaller, the larger the value of
Vo * If the angle of turn ¢ exceeds the

limiting angle ¢ then a turn through a larger angle becomes impos-

max?
sible. This limiting angle 1s attained when the line drawn from the
origin 1s tangent to the curve (the point S). Since the point B corres-
ponds to supersonic velocity (v1 > c*), and the point A corresponds to
subsonic velocity (0*2/(v1) < c*), it 1s obvious that there is a point
on the curve (9) corresponding to the velocity of sound past the shock
This point (D) is the point of intersection of the curve (9) with the
circle vgx + vgy = 0*2. To the right of point D we have supersonlc modes
of flow past the jump, while to the left we have subsonic modes. Let us
show that of the two possible values of the velocity past the shock
(F and F'), not more. than one corresponds to supersonic velocity and
consequently at least one must be subsonic.

For this purpose 1t 1s sufficient to show that the point S always
lies in the subsonlc regilon.

Let us find the coordinate Vys of the point S. The point S 1s the
intersection of the curve defined by equation (9) with the line

_ e\
by= \/l?,:/s Tar (11)

-1l =



S

From this we have for the point S:

dinw,y\ . -
(e R

Using equation (9), we determine d 1n vys/(dvxs):

dlny 1 I
¥ +-..‘ +——
dvg  w—wg ' 2 T2 e !
o' ‘n—“;l- . 7—+1.l+-’-1- Vs (13)

on the other hand

(13')
Equating (13) and (13') we obtain after simple transformations the

quadratic equation
1, —de, - B=0,

A=t (g4 4e),

Ty \id

(14)

The point D corresponding to the velocity of sound 1s the point of in-
tersection of the curve (9) with the circle Vgx + ng == 0*2. The coor-

dlnate Vyd 18 determined from the equation

(v, — v,..)’( Ved — c_")
e il = (15)
e

Transforming this equation, we obtain agaln a quadratic equation

W, —dv,+B =0, )
r— 1+t ] 3
4= (e o, (16)

B'=I§ﬂc“k.}'j—_3. v‘.’.c_:l:) .

A y+1

Equation (14) has two solutions. One corresponds to the point S'
where the line (11) is tangent to the curve (9). We denote it by v(l)

xS °
The second solution (vig)) corresponds to the point where the line (11) ‘!
erosses the tranan of sureve (2 sarealeier i Tn: rarsfestion shocks (S?').

- 12 -



< e AT .

’ \

R B e & - - - o - - - e m o e - . s - - = :.".O
i T s ammly - NS oI lleaTalle HLAATLLN LT Zade L3S

iI‘J

o

roots, vﬁé) and vﬁg), which corresponds to the presence in equation (9)

of the quantity (vl -V )2. It 1s easy to show that the point D corres-

2x
ponds to the larger of the roots vig).
Using the properties of quadratic equatlons, we write the obvious

equations:

l.'=
R (47)

. ’
149

2
(:;4:‘2

WM BB =", -
:‘“':(n. i) w0t ' (18)

where ¢y 1s the velocity of sound in front of the compression shock
[see (5)].
(2) (1) (2)
We recall that Ved < vy and Ved < Ved < vy- On the other hand,

(2) (2) (1)
VxS > vye Thus, we always have Vys > Ved ® The velocity vy of a super-

sonic stream can, as 1s well known, not exceed v =1y + 1/(y - 1) c*.

For this valuc v. we get c. = 0. From (18) we obtain for this case

1 1

Inasmuch as v§§) > vié), we also get vﬁg) > vié).

We have shown that for the maximum value vy (for specified c*)
the point S 1s located in the reglon of subsonlc velocltlies. Let us
show now that this property 1s maintained for all supersonic values of
the velocity vy of the incomlng stream. Let us assume that there exist

such values vy > c*, for which v(2) < Vﬁé)‘ Then, by virtue of the fact

xd
that Ved and vxS are continuous functions of vys there should exist such
(1) _ ,(2)
a value of v (v__ > v, > c*) at which Ves' = Veq + Equations (17) and

(18) will ve written for this value of v, in the following fashion:

1

-13 -
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Hence v§§) = c*a/(vl). But it follows from (9) that the coordinate

vy of the point with abscissa c*e/(vl) 1s equal to zero. Thus, vﬁg) is

equal to the total stream veloclity past the compression shock and is at
the same time smaller than c*, since vy > ¢*, This contradicts the con-

2)
d

We have reached a conclusion that over the entire interval of

(1)
) we have Vxs

dition that the point vi should correspond to the veloclty of sound.

variation of v, (from c* to v < vis) and thus the

max
point S 1is always 1in the subsonic region.

If the angle of the turn in the velocity is ¢ ( 01, where 01 is
the angle between the x axis and the line passing through the origin
and through the point D, then one of the possible velocities past the
discontinuity 1s supersonic, and the other 1s subsonic. If ¢ > 01, then
both posslble values of the veloclity lie 1n the subsonic region.

§3. FLOW OF SUPERSONIC STREAM PAST A WEDGE

Let us consider the flow past an unbtounded wedge with an aperture
angle 2¢, produced by a supersonic stream with velocity vy and critical
velocity c*, If the angle ¢ does not exceed the limiting value Qmax’
which 1is a function 9f vy and c¢*, then flow modes are posslble, in
which a shock wave initlates at the poilnt of the wedge. Then, as fol-
lows from the foregolng section, two flow modes are possible in princi-
ple, one corresponding to a larger velocity behind the shock and the
other corresponding to a smaller vglocity. The angle between the dis-
continuity line and the surface of the wedge willl in the former case
(B) be smaller than in the latter case (B') (Fig. 3). Thus, in the case
- 14 -
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of an 1nfinite wedge we have two equally valld
solutions, and we do not know how to choose be-
tween them.

Lan&au has shown [3] that any plane shock 1is

stable relative to small perturbations, and that

the singularity of the problem considered here

Fig. 3 l1es only in the fact that the discontinuity has
a kink (a sharp point). This case calls for an additional investigation
from the point of view of stabllity. However, such an investigation does
not seem to us to be fruitful. Indeed, were such an investigation to
yleld new results and were it to lead to the stability'of one of the
solutions, the solutlion more likely to be proved unstable 1s the one
with the large kink in the shock, that 1s, with the larger veloclity
past the discontlinulty. At large veloclities of the incoming stream and
at very small angles ¢, an oblique shock corresponding to a smaller
veloclity past the discontinulty is qulte close to a straight shock and
therefore has no kink whatever, whereas an oblique shock corresponding
to the larger velocity has a consliderable kink past the discontinulty.
Yet experlence shows that in the flow past a body, even at a small an-
gle ¢, the solution realized corresponds to the larger velocity past
the discontinulty.

The problem of flow past an unbounded wedge is a mathematical ab-
straction, the validity of which 1s not obvlous beforehand. The physi-
cal formulation of the problem calls for flow around a finlite body. We
should therefore not be surprised at the duallty of the solution for
a case which 1s physlcally not realizable. We shall show that in the
case of a finite body the two solutions are no longer equally valid.

Let us consider by way of an example the flow around a sharpened
body with the contour as shown in Fig. 4. As will be shown below, the
- 15 -



choice of the specific form of the con-
tour does not limit the generality of the
P concluslions.

~Let us assume that when a supersonic

{ stream flows past the body under consider-
] .

x: atlon a compression shock starts on the
1 .
; point of the wedge, and that behind the

ry '
7 shock the velocity remains supersonic
Fig. 4 (this is possible if ¢ < ol), that 1s,

the solution corresponding to the®larger
velocity behind the discontinulty 1s realized.

Wére the shock to extend to infinity without attenug}ing an inten-
8ity, then the resistance experlenced by the body would be infinitely
large (Fig. 4).

Actually, the entropy of the gas masses flowlng around the body
increases in the shock. As was shown by the author's paper [4], the
reslstance of the body 1s proportional to the expression /ngy, where
AS 1s the change iIn the entropy per unit length. Since AS 1s in our
case a constant flnite quantity, for an unbounded discontinuity the ex-
pression giyen above, and with 1t the resistance, become infinitely
large. Thls does not occur, since perturbations that lead to the atten-
uation of the shock originate at the point A,

Because the veloclty of the flow around the angle OAD exceeds the
velocity of sound, thé perturbations originating at the polnt A propa-
gate along the Mach line. The solutlon corresponding to a plane oblique
shook wlll be valid only to the polnt C, where the shock crosses the
first Mach llne (so-called weak di;continuity), making an angle a, with
the directlion OA. This crossing must occur, for in wccordance wlth the
proof ilven in the preceding sectlon @ > 3. > round the -

- lu =
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OAD, the stream expands, and, in accordance with the property of super-
sonic flows, the velocity will increase. Consequently the velocity of
the stream in the region ACC' will exceed that in the region OCA, and
therefore the discontinuity liné should bend accordingly. It 1s obvioug
that the angle betweeen the discontinuity line and the x axis should
decrease and approach the Mach angle of the flow ahead of the shock,
since the difference between the velocities ahead of and behind the
shock decreases. In the region AC'C" the velocity increases even more
and the intensity of the shock becomes even less. At sufficiently large
distances from the body, the intensity of the shock becomes as small as
desired, and the discontinulty line merges with the Mach line. The ex-
pression /Zde is in this case finite, as 1s also the resistance of the
body. The calculation (which can be carried out only if the angle ¢ 1is
small and the velocity of the incoming stream close to the velocity of
sound) shows that the resistance calculated with the expression./zde
coincides exactly with the resistance calculated directly from the dis-
tribution of the pressure along OA and OA' (see [4]).

Let us assume now that a compression shock starts from the point

of the wedge, and behind it the veloclty becomes subsonic. In the case

of subsonic flow past the angle OAD, the perturbation starting from the
point A propagates in all of space and therefore the discontinuity line
begins to bend immedlately, starting from the vertex. Since the sub-
sonic stream past the angle OAD expands, the perturbation starting from
A leads to a decrease in the veloclty, and the intensity of the shock
should increase, while the discontinuity line should bend in such a way
as to approach the y axis. Thus, in thls case we shall have no section
whatever in which the shock would be linear.

[From the foregoing qualitative analjsis we should expect that
in the flow past a pointed body the compression shock can be tangent to

-17 =



the vertex only if the velocity behind the shock exceeds the velocity
of sound. If the angle ¢ > °1’ then, as shown in the preceding section,
only one 'solution is supersonic and the problem is solved uniquely. If ‘)
L 2 01, both solutions correspond to subsonic velocities and the shock
cannot start from the vertex of the body. In this case the shock "Jjumps
away" from the body, 80 that the real limiting angle at which the oc-
currence of discontinuity starting from the vertex is still possible
1s not o . . but ¢,.] *

The criterion obtained by Levinson [2] on the basis of an incorrect
theory. differs greatly from ours. In place of the condition Vo > ¢y
(or vy 2 c*) Levinson obtained a condition according to which the tan-
gential velocity component 1s Ve > eye As can be seen from Fig. 11l of
Levinson's paper, this condition differs from ours at all values of the
velocitles of the incoming stream.

In conclusion we point out that the criterion proposed 1s not at
all universal for the flow around an arbitrary body. We recall that in
flow past a rounded body there is produced a discontinuity line, the
velocity behind which runs successively through all possible values
from c*a/(vl), corresponding to the point A on (curve 9) (see Fig. 2),

to Vys corrgsponding to the point B.
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From the editor: The paragraph enclosed in square brackets is in-
cluded in the manuscript, but a note on its margin indicates that S.Z.
Belen'kly subsequently started to doubt the correctness of this conclu-
slon. However inaamuch as the general conclusion that the two solutions

are not equally valid in the case of a finite wedge is regarded at the
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il It 1s easy to see that the direction of the oblique shock

Is perpendicular to the line F'B which Jjoins the velocity
vectors before and after the shock, that 1s,
ctg (CBF') = vay/(v1 - Vax)' It is evident therefore that

for a given vy the direction of the shock varies continuous-
1y and monotonically along curve (9) from m/2 to a.

14 To check the considerations advanced here, it would be desir-
able to carry out experiments with flow around a wedge at an

angle ¢ larger than 01 but smaller than .max'
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HYDRODYNAMIC EQUATIONS ﬂITH
ACCOUNT OF RADIATION

S.Z. Belen'kly

To solve many physical problems, particularly in astrophysics,
it becomes necessary to take radiation into account in the hydro-
dynamic equations. In spite of the fact that the materlial equations
of motion with account of radiation were derived many times, the ques-’
tion has not yet been fully clarified. In the present article we derivea
the fundamental equations in two different ways, and also discuss work
by other authors.

1. We start from the laws of conservation of matter, momentum,
and energy.

Let
/{o, r)dVd0

(1)
be the number of particles in athree-dimensional volume d0 = dxdydz

with velocities in the interval at(vx, Vys Vgs Vy + dvx, vV, + av

y y y’ Vg *

+ dvz). Let, further,

N(n, r, v)dwdud0 (2)
be the number of photons in the three-dimensional volume d0 within the
s0lid angle dw and with energy lying in the interval hv, h(v + dv),
where v 1s the radiation frequency and h 1s Planck's constant; the di-
rection of propagation is characterized by a unit vector f. The cosines

of the angles between the vector ﬁiand the coordinate axis are denoted

by Q. The index 1 runs through three values corresponding to the angles

with the x, y, and z axes.

)



We consider the change in an arbitrary component of the momontumi
_J.%(Pcuem.l-p‘“‘l)do' (3)

Here Pi,veaheh is the density of the material component of the momcntum
equal to
P, =m (v, 7) vV, (4)

where m 1s the mass of the particle. Were the particles of the mater-
1al to be at rest in the reference frame considered, we would have
Pi.veshch = O, Actually, however, the particles move with macroscopic

L s

velocity V. Thus, Vy = V; +

ey

17 where 32 is the microscopic particle
_velocity. Consequently,
P =mV,[f (0, )dV +m [vf(0, r)aV. (5)
But the quantity
mj/(v. f)u’:’:p
18 none other than the density of the material, and
[vif (o, ryav=0
The density of the radlation momentum component 1s
l’l";'u = -:- I Noaglvde, (6 )

since hv/c is the momentum carried by the photon in a direction chare
acterized by the vector n. The change in momentum in the volume under
consideration 1s determined by the momentum transferred by the particle
and by the photons through the surface surrounding the volume.

The momentum transferred by the particles is
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m§l(v. r)v;(vds)dV =

_,,,§ f {0, r)(V.,-i-v;)(V,-}-v;)dS.dVa | -
=m§ (10 AV, +2V,+5V, +v5)dS,dV= , i
=V Vb, +m b/ (v, r)opdVds,

where dS is the surface element, the absolute value of which is equal

to the area of the element and whose direction is normal to the surface.’
Prom the macroscopic point of view, the quantitites under the surface-
integral sign in the last term are thecémponentsor the pressure ten-

sor ‘P
1k pa=m /(v r)vzaV,
(8)
If we neglect viscosity, then
P¢=P3m (8')
where p is the pressure of the material.
The momentum transferred by the photons is equal to
§ [ N e, (capdS,) dudv== § [ NivaggdedwdS,. (9)
The quantities
P =Il\’hvz‘l,dwdv (9')

form the tensor of radiant energy pressure.
The surface integrals (7) and (9) can be transformed in accord with
the Gauss theorem into volume integrals:

$romdS,+ § pudSy=[ - (pwne+- paav, (10)
: _fp;ds,af:%dl’. (11)

Bquating expression (3) to the sum of (10) and (11), and taking into
consideration the fact that the equality obtained must hold true for
-22 -
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an arbitrary volume d0, no matter how small, we obtain the following
differential s5.i2%2on:

2 (,,p : u_e)‘= — 2 GV Vit Pt ), (12)

o T g
where H 18 the vector of the radiant energy flux;
I,=- J Nivadvdw.

Let us change over from the derivative of the velocity at a sta-
tionary point to the Lagrangian derivative D/Dt, and let us use the
equations for the conservation of matter, which remain valid 1if pair

production processes are neglected. Equation (12) can then be rewritten

as:
DV, _ip _"L-’r_!_('_':)
PTn = "o T 0y w\d)]* (121)

The last two terms are due to the radiation.
Let us proceed now to the energy conservation equation. The change

in the energy of a volume element per unit time 1s
— [ 5 Vi~ Waaa) dO, (13)

where W h is the energy per unit material in a unit volume and wizl

veshe
is the radlation energy per unit volume;

> my?
lV...m=~\ f(v, 7) (-,Zl-f-u)dV. (14)

where u 1s the potential energy of the particle in the field of the
other particles. If the particles of the material move with macroscopic

-t
velocity V, then
~ £ 2
Ve {1100 (272 w52V -, (15)

where €y is the potential energy per unit mass of the material. Since

m | flo. AV =g, [[(0ar)edV =0,
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we get
Wann="7+ ey, =t e (16)

¢

(qk is the kinetic energy of the microscopic motion of a unit mass of
the material, and ¢ is the internal energy per unit mass of the mater-
1al).

The radiation energy per unit volume 1s

Waaa = [ Nhvdrde, (17)

The change in the energy of the volume per unit time is due to tyo
causes. First, the change of the energy 1s due to the flux of kinetio

and internal energy of the materlial through the surface surrounding the,

A

volume:
CfmV? m»'.= L .
§U/(v. r) (—r'--i- -—2-'-+ m¥’ o, )d'/ +p«.] (Ve +0)dS,]=

=§{ + =) (VS0 i o N, mV gdsd. (18)

But
mI/(v, r) v:v;dV =p,.
The material energy flux 1is
é:[("l—.::""'f") Fat thi:] ds,. (18 ! )

Secon&, the change in energy 1s due to the radiant energy flux:

§ | Nive (2,48,) dvd. (29)

Equating the sum of the integrals (18') and (19) to expression (13) and
changing over from surface integrals to volume integrals, we obtain,

by taking a sufficiently small volume, the following equation:
. ' d It oy eV
LR+t W= =[] R (20)
where H i1s the radiant energy fluk vector. Using the equation for the ‘1
conservation of matter and equation (12), we can rewrite (20) in the
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form:

ay D ap;
Tam b n Dyt y 2l ol '
vt +e e I)I—V‘;;;-F“ot c’) g * (20 )

In the derivation of (12)-and (20) we calculated the quantities
determining the radiation in some "resting" coordinate frame. Yet it
is convenient in many cases to calculate the radiation in a coordinate
system that moves together with the matter. Let us assume that the velo-
clty of a volume element of the matter 1s smiall compared with the velo-
city of light. On changing from the coordinate system in which the
matter moves, to a system in which it 1s at rest, it is necessary to
use the following formulas which take into account the Doppler effect
and aberration:

v=y"(1-Fa;3), (21)

\'. . .
@, - (24 5).

(22)
Here B = Vk/(c). The quantities designated with an asterisk refer to
the coordinate frame in which the matter 1s at rest.
The valﬁes of wizl’ H and p'1k in the two coordinate systems are
related by:
Wias = [ Nindudv= [ N*lv*dusdvs (1) = J; Niotdu'ds (A +ai ) (23)

We obtaln, with accuracy to terms of order v/c,

e v ey, ”; LY .
”’ll:o:l =1t wan o J"A T lvnzun .El"{ ”&'\ (2“)
i,=¢ 'f Nl dvdw® =- ¢35, ] Neivezialdvdw® c;'i..j‘ Nleldvde® =

=V VW

n . (25)

Finally,

B . .V . 14 ":
V=Pt Uy e (26)
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Substituting (24), (25), and (26) into equations (12) and (20),
and neglecting terms of order v/c, we obtain ultimately that in this
approximation equations:(lé3 and (12') remain without change (if it 1is
recognized that we neglect the term Hl/ca), while equations (20) and
(20') assume the following form:

ST et W)= =i (7 eVt it

g . 1 . (m)
+ V,p‘.-{'- VPt Vllyuu]'
avy Da P+W.. Dy . Ov; ‘)”:
Dot D= e w " m (28)

If the radlation is 1sotropic in the coordinate frame that moves
together with the matter, then Hﬁ = 0, and pi; = p'*éik.
Equation (28) is then written as:

D“':vn D P+ "'. -+ ‘V:” D
ma g A PTEE T Tealp 2
e TP ; = 0. ( 9)

This equation expresses, as can be readily seen, the constancy of the
entropy in a moving volume of 1liquid in which the radiation field 1is
isotropic.

2. The hydrodynamic equations with account of radiation can be
derived also by starting from the energy-momentum tensor for a system
consisting of an aggregate of particles and radiation.

In a coordinate system with respect to which the given volume ele-

ment of matter is at rest, thls tensor has obviously the form:
T::‘:-— pa.:\—p;‘ (30)

vhere, as usual, o and 8 run throizh the values from 1 to 3, p 1s the

materlal pressure, and p&; 18 the radiation pressure;
TimTy= — S 4, (301)
where H; are the components of the radiant flux vector in the coordinate
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system where the given material element is at rest;

Ta= Wi+ Wi (30™)
wgeshch is the density of the .energy of the material, including the
rest energy.

We now change over to a reference frame with respect to which the
given element of matter moves with macroscopic velocity v. We assume ’
that this velocity 1s directed along the x axis. The tensor Ttk is
then transformed into the tensor Tk We confine ourselves to an ex-
amination of the one-dimensional problem, that is, we assume that
p:s = 0, with the exception of p;x and H; - H; = 0,

In this case

. LI .
T — “(I' ) — el —G (W:ﬂu + Wow)
n= )

’
=

1ad .2 . » U]
Woan) — S e 1, + ) (’+ Per)

y I ' (31)

c2

i v o
(3 52 ) = i OVt Wi+ 2o 1)
2] )

-

T3‘1 = T;'.!\ '/"l-'l = T;Jl

e

wem 7

T« el

the remaining components are Tik = 0,
The equations of motion for the system under consideration are
determined from the conditions aTik/(axk) = 0, which in our case reduce

to the following relations:

» vd
N (rﬁ-l'l,%-ﬂa 07 o (Wl + W)\

ox | e / -
23

ll. ud , & " . . *
(“,T (l + }T') T (Vi + W wa TP+ P"))=0.

(32)

&l

+

P
t—-a

&

'Y

(ll; (‘ + {-') A (W + Wian + '-f-'zt))
A 3.
l-3
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v -

w' w‘ —) —=o L] L]

+£_(( (e na) ’2¢:‘”.+?(P+Pn)>=o.
—a

(33)

Equations (32) and (33) are not complete without the condition for the
conservation of the number of particles. For ‘the relativistic case this

equation is written as:
o Yo 22 =0,
"'t"(vr:‘w}'c*) iz (va--w) (34)

where n 1s the number of particles per unit volume in the rest systen.

Y
Let v <€ ¢. The energy wveshc

form of a sum of the "rest energy" of the matter and the internal energy

n °an then be represented in the

of the matter per unit volume:

we = ume 44, (35)
where p = nm. Equation (32) subject to the condition v/c << 1 assumes

the form:

0 . o mw\
3 (pT P e) (!‘" += ) =0

(36)
Changing over to the nonrelativistic form of (33), we must take
into account equation (34), which can be written, accurate to terms

quadratic in v/c, in the form:

wlv (@) ]+ et +)] =0 (37)
Using (37), we find that when (v/c) << 1 equation (33) assumes the folw

lowing form:
[ roeatrd i, W)+ I+
o (5 b W) =0. (38)

It 1s easy to see that equations (36) and (38) coincide with equations
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The system of equations (12) and (20) or (12') and (20') must be
supplemented not only with the continuity equation for the matter, but
also by the transport equation.ror the radiation, which we shgll not
stop to discuss here.

3. We compare the equations obtained by us with the equations ob-
tained by others, first of all with the equa?ions of Milne, who pre-
pared a review of the question considered by us.

If we neglect the term H/c2 in our equations and the gravitational
forces and internal energy sources in the Milne equations, then equa-
tion (12') coincises with the corresponding eguztlion of ilre.

However, the equations that expreas the conservation of energy will
be different.

Milne's equa%ion in our notation has the following form:

W nn Di  pLp Ly Ol
—r +P-D,———c'? D =" (39)

here p' is the additional pressure due to the radiation. Let us compare
equation (39) with (20'). They coincide only if we assume that tensor

pik has the form:

P;.= "’.'L-p"
and supplement the right half of (20') with the term
~,,',',‘. {r'V).

This term is analogous to the term — a(pvk)/(bx which is contained in

o)
(20) and has the physical meaning of the work done by the pressure
forces. However, whereas the term — b(ka)/(Bxk) follows directly from.
the transformation of the material energy flux, given in expression (18),
no corresponding term arises for the radlation, as can be seen from (19).
Milne's equation 1s therefore incorrect. .

The equations of Jeans and Vogt for the energy has the following
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form:

DWW, P # W in D ol

T T m TR T (40) ¥ O
Milne believes that it holds true under certain boundary condtions.
Actually, the Jeans and Vogt equation is correct, as can be readily
verified by comparison with (28), if, first, we assume that
pik == p'Bik, and, second, the quantities characterizing the radiation
are measured in a coordinate system with respect to which the given
materlal element 1s at rest.

The use of the energy conservation equation in the form (28) is
meaningful if the radlation fleld differs little from equilibrium with
matter.

In conclusion, I am grateful to Professor I.Ye. Tamm for a discus-
sion of this problem.
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PRINCIPLES OF PROTON SYNCHROTRON THEORY
M.S. Rabinovich
FOREWORD .

The development of accelerator technology acquired a particularly
vigorous character after 1944, when V.I. Veksler [1-3] discovered the
phenomenon of automatic phasing of particles in resonant accelerators,
and new methods for obtaining high-energy particles wére obtéined on
its basis.

Even by the end of 1945 it became possible to proceed to design
and create installations, aimed at obtalning electrons and protons have
ing energles of several million electron volts. For such energles, the
most sultable accelerators turn out to be the synchrotron for electrons
and the synchrocyclotron for protons, deuterons, and other particles.

It 1is obvious that the development of accelerator technology could
advance only on the basis of well-developed theory, and indeed, in
1945 — 1947 the works of the author [4-8], S.M. Rytov [9], A.L. Burshteyn
[10, 11]), A.A. Kolomenskiy [13, 14] and others laid the groﬁndwork for
the theory of large resonant accelerators¥.

In 1947, a synchrotron for 30 Mev was first started up at the
Physics Institute of the USSR Academy of Sciences (FIAN), and two years
later a synchrotron for 265 Mev (FIAN) and a synchrocyclotron for 550
Mev ** (Institute of Nuclear Physics Problems, Academy of Sciences USSR =
IYaPAN) were constructed.

For nuclear physics to progress, it'is very important to be able
to attain evenhlarger energies. The production of protons with energy
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of 10,000 Mev would have made it possible to penetrate into the region

of perfectly new phenomena, connected with the production of nucleons

and heavier particles. The nuclear processes that occur at short dis=- ' )
tances attainable at such energles can change appreciably our notions
concerning the nuclear forces. ' ‘

In 1948 a group of theoreticlans at the Physics Institute of the
Academy of Sclences was charged with the problem of creating a complete
and sufficlently exact theory that can serve as’'a basis for the design
of an accelerator to produce protons with energy of 10,000 Mev (10 Bev).

At the present there exists only one type of accelerator with
which the above-mentlioned energy can be attalned. Such an accelerator
is the proton synchrotron with slotted magnet. The linear gaps are used
to hold inflector plates, accelerating and signal electrodes, etc.

The colossal dimensions of the installation, the presence of li- 1‘
near gaps with impossibility of making the magnet gap sufficiently
large, the injection of the particles into the accelerator chamber at
relatively high energles, the need for exact correspondence between the
values of the frequency and the magnetic fleld, and the influence of
different flne effects on the motion of the particles, all these and
many others have posed before the designers, particularly before the
theoretical physicists, many new and complicated problems.

In 1948, when we embarked on the development of the theory of a
proton synchrotron yith slotted magnet, only one paper devoted to fast
oscillations, that of Dennison and Berlin [32], was known. However, as
willl be shown in Chapter II, even this paper was not satisfactory. We
therefore had to do the whole work from scratch.

During 1948-1950 the problem facing us was essentially completed
[16~31]; some additional questions were worked up in 1951. However, V)
even now practice poses before theory many new problems.
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In the development of the theoretical problems, particular atten-
tion was pald to the applied aspect of the vroblem. We have therefore
attempted to reduce the theory to a form that 1s convenient for direct
use for practical purposes. To.the contrary, practice kept urging on
the theoreticians, raising new problems, making it possible to Judge
the valldity of various assumptions.

On the basis of theoretical and experimgntal work 1t was shown
that protons'with energy of 10,000 Mev can be obtalned; the basic para-
meters of the accelerator were chosen, the technical specifications for
the individual units were formulated, and sketches and technical designs
were prepared for two installations (a model for 180 Mév and an instal-
lation for 10,000 Mev).

The theory developed by the author and his co-workers served as
the gulding material in the construction of the 10,000-Mev proton syn-
chrotron. The correctness of some of the important conclusions of our
theory was confirmed with a working model of a proton synchrotron op-
erating at 180 Mev.

A description of the experiment made with this model and a compari-
son of the results with the theory was made in later papers by the
author, I.S. Danilkin, L.P. Zinov'ev. and V.A. Petukhov.

In the present monograph are gathered the works of the éuthor for
1948-1950, devoted to the theory of the proton synchrotron with slotted
magnet. These works, naturally, do not cover all the problems in accel-
erator theory, but it seems to us that the main and principal problepa .
are quite adequately represented.

Without changing the general plan of the exposition, we have made
a few small additions 1in the course of preparing the manuscript for
print, connected with the application of ‘our theory to strong-focusing
accelerators, based on work performed in 1953 [15].
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The present work consists of six chapters.

In the first chapter we investigate slow, so-called radial-phase |
oscillations occurring when particles move in an accelerator with a slctl‘ )
ted magnet. This chapter is a natural continuation and development of
the author's earlier papers [16]). Using the method developed by us (8],
we investigate the behavior of the particles on the phase plane, paying
principal attention to many singularities of motion in an accelerator
with slotted magnet, which are of practical significance.

We introduce a new stabllity criterion (I, 34) for the phase oscil-
lations, connected with the presence of the straight-line gaps; the
change in frequency of phase osclllations, the stabllity regions, the
decrease in the oscillation amplitude and other quantities are deter-
mined for an accelerator with slotted magnet. The formulas obtained by
us are of great significance for applications and for the theory of in-
Jection (Chapter V) and of resonances (Chapter IV).

In this chapter we investigated also acceleration in multiple re-
sonance, that 1s, for an integral ratio of the frequency of the accel-
erating field to the frequency of revolution.

In the second chapter we consider fast particle oscillations. Un-
1like the kqown paper of Dennison and Berlin [32], we present here a
correct account of the influence of the linear gaps on the inJjection
and ;he capture of the particles in the acceleration mode, we determine
the optimum angle of emission of particles from the injector, and in-
troduce the concept ;f the envelope of the particle trajectory, with
which 1t makes 1t possible to describe simply and illustratively the
behavior of the particles in the accelerator. The motion of the particle
is calculated for the first time w;th allowance for the presence of the
magnetic fleld in the llnear gaps.

In a real magnet there are always certain deviations of the mag-
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netic fleld from the calculated value, which accelerate the orbit and
consequently lead to an equivalent loss of part of the working region
of the magnet. The presence of linear gaps in the magnet not only chan-
ges the character of the inrluénce of the distortions, but also creates
the possibility of occurrence of altogether new perturbations (for ex-
ample, saturation of the edges of the magnet sectors facing the linear
gaps). .

It 18 clear from the foregoing that a clarification of the influ-
ences of the deviations of the magnetic fleld from the calculated value
i1s one of the most important problems in the theory. Our own investiga-
tion [17], made in 1949 (together with A.M. Baldin and V.V. Mikhaylov),
1s still the only work devoted to this problem. The results of the
third chapter, in which these calculations are presented, were already
used not only in the designs but also in the processing of the measure-
ments made on the 180-Mev proton synchrotron model and on individual
blocks of the magnet of the large accelerator.

The fourth chapter treats an important and complicated problem of
resonance phenomena between fast and slow oscillations. The resonance
phenomena 1n accelerators with slotted magnets differ essentially from
resonance phenomena in cilrcular accelerators. This difference manifests
itself, first, iIn the displacement of the resonant values of the chara=
acteristics of the magnetic fleld and, second, in the manifestation of
multiple resonances. We have developed a speclal procedure for calcu-
lating with a high degree of accuracy the resonance phenomena in ace-
celerators with slotted magnets. In spite of the complexity of the cal-
culation, the final formulas are simple and admit of a clear physical
interpretation. Along with the main calculation, we consider for the
first time in the fourth chapter fast par'ticle oscillations with account
of the change of the magnetic fleld and the increase in the particle
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-high-frequency harmonics of the magnetic field and the phase oscilla-’

‘energy.

Finally, we consider in the same chapter resonances between the

O

tions. Using the method of Bogolyubov [33] and Mitropol'skiy [34], we

-succeeded in analyzing the resonance phenomena in the nonlinear approx-

1matioh, which radically changes the results previously obtained and is
quite important for practice. It turms out that in resonance the oscile
lation amplitude is limited not by "friction" and not by the speed of
passage through the resonant region, but the very nonlinearity of the
phase oscillations.

In the fifth chapter, injection theory 1s develope&. After the de~
talled study of particle motion made in the first two chapters, it be-
comes possible to caloculate the number of particles captured into the
acceleration mode, and to choose the most effective and simplest me-
thod of injection. Numerous plots make it possible to eatimate how the
intensity is affected by various parameters of the accelerator and of
the proton beam, by the error in the instant when the accelerating field
is turned on, by the error in the angle of admission of the particles
into the chamber, etec.

In the sixth chapter the envelope method is used for a theoretical
investigation of the free oscillations in strong-focusing accelerators.
This method turns out to be most frultful in the solution of problems
that arise in the design of a variety of strong-focusing accelerator
types.

In our work, which was completed in March 1953, the significance
of resonances in strong-focusing accelerators was pointed out for the
first time. At the present time, there is an extensive literature de-
voted to this problem, so that we shall touch upon this question quite 0;)

briefly.
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Finally, in the sixth chapter we derive a phase equation for a

strong-focusing accelerator by introducing a very convenient new quan=

- d o
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On the whole, the sixth cﬁﬁpter develops the phyiical principles
of strong=focusing accelerators quite sufficiently for a first intro-
duction.

In conclusion, we shall stop to discuss‘some problems which for
various reasons could not be treated in the present work.

First among them 18 the entire problem of the motion of the cham-
ber from the linear accelerator-injector to the chamber of the 10 Bev
proton synchrotron, considered in the paper by A.A. Koiamenskiy; anoe-
ther problem 1s that of extraction of the protons from the accelerator,
developed by Sabsovich, Ganzhin, and others.

Finally, we did not consider scattering and charge exchange of the
particles during the acceleration process, and also the problem of pro-
tection against radiation. All these problems are treated in a sufficient
number of papers (see [31, 35, 361]).

The main deductions of the theory are always illustrated with the
data on the 10 Bev proton synchrotron as examples, although they have a
more general significance. Some of the methods developed by us were used
to design accelerators of other types and of other dimensionﬁ, and in
particular for accelerators intended to obtaln both larger and smaller
energles.

The magnet of the 10-Bev proton synchrotron consists of four sec-
tors, separated by linear gaps, each eight meters long. The average
radius of the magnet pole of the sector 1s 28 meters, the width of the
pole is 2 meters, the height of the magnetic gap 1s 40 centimeters. The
magnet section has an E-shape form. The mhximum value of the magnetic
field is 13,000 ocersteds, which i1s reached within 3.2 seconds. At the
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start of the acceleration, the rate of build-up of the magnetic field
can change from 4,000 (normal value) to 12,000 cersteds per looond:'“"
(forced Qalue). The magnetic fleld index lies in the greater part of
the working region between 0.55 and 0.75 (average 0.65). The injection
enefgy is wi = 10 Mev. .

()

The present work could not be performed without close working c;n-
tact with a large group of persons from the P.N. Lebedev Physics Insti-
tute of the USSR Academy of Sciences, the Scientific Research Institute
for Electrophysical Apparatus of the Ministry of Electric Industry of
the USSR, and the Radio Laboratory of the USSR Academy of Sciences, who
participated in the design and production of the proton synchrotron of
the USSR Academy of Sciences.

I am particularly indebted to the scientific director of all the
work involved in the construction of the accelerator, V.I. Veksler, for

continuous attention.

Manu-
script
Page

No. [(Footnotes])

31 * The foreign literature of 1946~1947 also contains a
number of articles in which various problems connected with
the construction, use, and theory of various types of accele
erators are considered.

31 *##* At the present time the proton energy attained in this
synchrocyclotron is 680 Mev.
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LIST OF SYMBOLS

We list here the most frequently employgd symbols, which are com-
mon to all the chapters of the present book. Along with them, separate
symbols are introduced in each chapter, which apply only to the parti-
cular chapter. '

The formulas in each chapter are numbered independently. Reference
to formulas of other chapters 1s accompanied by indication of the num-
ber of the chapter. For example: (III, 15) denotes the fifteenth formu-
la of chapter III, while (15) denotes the fifteenth formula of the same
chapter in which the reference 13 found.

B = v/c — ratio of particle velocity to the velocity of light.

¢ = coscv (everywhere except in the first chapter).

¢ = veloclity of light in the first chapter.

e — particle charge.

E = equilibrium value of the total energy of the particle.

Ea - proper energy of the particle. '

OE - deviation of particle energy from the equilibrium value.

F=1- (L/(21Ry + L)[n + 8%(1 = n)] = a coefficient.

F_ - amplitude of free oscillations.

c
¥ - magnetic field intensity vector.

Hr' Ho, Hz - intensity vector components.

H - axial component of the magnetic fleld.
Km1l4+n/(1- n)(l/ﬂa) -a coerricfgnt.
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Wh - for vertical oscillations

V1 = n for redial oscillations.
L - length of all linear sections.
1 = length of one linear section.
m - mass of particle.

my - rest mass of particle.

. 4 —~ frequency of free oscillations in the accelerator with

slotted magnet, in dimensionless units.
n = index of magnetic field (see I, 6).

'v = angular dimension of magnet sector.

q - multiplicity, ratio of frequency of accelerating field to
revolution frequency.

- orbit perimeter/2m.

P = lx/2R.

r - radius in cylindrical coordinate system.

R = radius of instantaneous orbit.

Ro - radius of equilibrium orbit.

p — deviation of particle radius from equilibrium value.

p4 — distance from 1njector to equilibrium orbi?.

P — maximum value of amplitude of radial-phase oscillations.

8 = sin «xv.

o = length of path along instantaneous orbit/R

T - period of revolution of particle.

VO - sum of amplitudes of the voltages of the acceiertting gaps.
w1 = kinetic energy of the particle at the instant of injection

into the chamber.

¢ -~ phase of particle relative to the phase of the accelerating
electric fields; ¢ = O corresponds to maximum voltage on the
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accelerating gap at the instant of passage of the particlﬁ,:
06 - phasing point (I, 21). -
01 - minimum value of the phase in the oscillations.
¢, — maximum value of the bhase in the oscillations.
‘- de/(dt) = phase velooity.
w = frequency of revolution of the particle in the magnetic
field H.
Wy = frequency of accelerating field.
w - frequency of phase oscillations.
g -~ distance from particle to the central plane.
. { p for radial oscillations.

z for vertical osclllations.
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Chapter 1
RADIAL-PHASE MOTION OF PARTICLES
§1. INTRODUCTION

Motion of particles 1in an accelerator with slots differs essen-
tially from the motion is a circular accelerator. In both cases, how-
ever, it can be broken up into three component motions.

A. Motion with resonant frequency along an orbit, with very slowly
varying or even constant radius. This form of motion will be called
motion along an equilibrium orbit.

B. Slow oscillations about the equilibrium orbit, which are called
radial-phase oscillations and which are connected with the change in the
particle energy due to the passage through the accelerating gap at dif-
ferent values of the phase of the alternating accelerating field. By
way of an example we can point out that in the apparatus designed for
the production of 10-Bev protons, the period of the phase oscillations
ranges from 520 to 1450 microseconds. Inasmuch as the period of the
phase oscillations 1s approximately 100 to 2,000 times larger than the
period of revolutlion, the particle goes through many revolutions before
the radius of the equilibrium orbit changes appreclably. Consequently
the orbit of the part‘;icles that execute slowradial-phase oscillations
is almost closed. This quasi-closed orbit will be called the instantan-
sous orbit.

C. Fast oscillations about the instantaneous orbit. These oscilla-
tions are also called free osclllations, since they are not connected,
in first approximation, with the fluctuations of the particle energy as

- 42 -

()



the particle is accelerated. The period of the fast oscillations is
usually on the order of the particle revolution. (In weak-focusing
installations 1t 1s somewhat larger, and in strong-focusing installa-
tions 1t is 5-15 times smallerf. Along withradial free oscillations,
there exist vertical oscillations about the central plane of the magnet
(the symmetry plane of the magnet). This 1s the only form of oscilla- .
tions in the vertical direction. .

Thus, ths rizture 5f the motlon in the proton syrehrotron is as
follows: the instantaneous oroit (which is almost circular) executes
slow oscillations (pulsates) about the equilibrium orbit. During the
time of each osclllation, the particle has time to maké many revolutions
(from 100 to 2,000, depending on the particle energy). Fast free oscil-
lations are produced about the instantaneous orbit, with a period that
18 1.5 or 2 times larger than the period of revolution (the period of
revolution i1s 7.5 microseconds at 4 Mev and 0.7 microseconds at 10 BeY).
Superimposed on the above-described motion in the central plane are
also vertical oscillations, with a period which likewise differs insig-
nificantly from the period of revolution.

The resolution of a single motion into components 1s, of course,
arbitrary, but it contains no inaccuracies or arbitrary assumptions.
Our main statement is that these three types of motion can bé regarded
independently. Important exceptions are resonance phenomena and tran=-
slents. These, however, will be consldered separately. The connection
between the free and phase osclllations manifests 1tself, in particu-
lar, in the so-called gap osclllations. The latter are due to the in-
termittent character of the manner by which the particle acquires
energy. The basis for the possibility of considering these motions in-
dependently in the majority of cases 1s the large difference in the
frequenclies of the fundamental quantitles that characterize the differ-
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ent types of motion. A rigorous proof for this statement was derived

by the author for circular accelerators [6, 8]. A similar proof was
obtaihed in a‘dirrerentomanner by S.M. Rytov [9]). The only one to touch
upon this question in the foreign literature is Frank [37], who, how-
ever, made an error which was discussed in [8].

For accelerators with slots, @he proof of this theorem 1is quit;
cumbersome, but it was made by A.A.Axolomenskiy (24] by the method of
finite differences. A simpler proof can also be obtained, valid for
small linear gaps (expansion parameter L/2mR, where L is the total
length of all the linear gaps).

We can thus investigate henceforth each type of motion independent-
ly, making use of the calculations given above, and of the physical ob-
viousness of the statement given above.

We shall henceforth use always, for each magnet sector, a cylin-
drical coordinate system with the plane z = 0 colnclding with the cen-
tral plane of the magnet.

§2. EQUILIBRIUM ORBIT

By definition, the frequency of a revolution of a particle along
an equilibrium orbit is equal to the frequency of the accelerating elec-
tric fieldiwb(t). It 1s obvious that the radius R, of the equilibrium
orbit is determined from the following conditlons:

neartin v=mETO= V@ W)
where B = v/c, Ep = 938.1 Mev 1s the proton's proper energy, L is the
total length of all the linear gaps, and H (R,, t) 1s the vertical com-
ponent of the magnetic fleld in the central plane at the radius Ro.

Eliminating E from the three equations, we obtain Ro as a funotion
-of H (Ro, t) and wb(t), that is, in final analysis, as a function of
the time t. Combining the relation between H and Wy Wwe oan make the
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radius Ro of the 9qu111br1um orbit vary in accordance with any pre-
scribed law, and in particular, stay constant. Obviously, the latter
case is the most typical for the proton synchrotron. Indeed, during the
time of acceleration it 1is esséntial that the radius of the equilibrium
orbit remain constant, in order that the dimensions of the apparatus de
minimal, but it may turn out to be convenient during the time of injec-
tion to elther 1lncrease or decrease the radigs of the orbits.

Eliminating the energy E from equation (1) we obtain the connection
between the frequency wb(t) of the accelerating field and the magnetic
field HO(RO, t), guaranteeing acceleration on an equilibrium orbit with
radius Ryt |

13
— A 1]
W= - T T —

SRbiy 44, LR (el

(2)

Regarding Ro in equation (2) either as constant or as dependent on
the time, we obtain every time the required law relating the change in
the frequency with the change in the magnetic field. To the contrary,
knowing the dependence of the magnetic fleld and of the frequency of
the accelerating fleld on the time, we can determine the time dependencq
of the radius R,.

Let Eb(t) be such a law for the variation of the frequehcy as to

make R~ = R. = const L.
0= To ’ 2re__Trll (B 1)

mully = by Lot Tl (3)
Fig. 1 shows the dependence of the frequency f = Eb/(2w) on the
value of the magnetic field for a 10-Bev proton accelerator.
Let the true frequency of the accelerating field wb(t) differ from

the value required in accordance with (3)
[]

0, (1) = 9, (£) <+ 3a, (1). (4)
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Thenthe radius of the equilibrium orbit will likewise not be equal to

K.
o, Ry=R,4an,.

(5) -

The connection between Awb(t) and AR, 1s determined, acourate to
the first powers of Amb/(wb) and ARO/(RO) from equation (3), in whioh
we substitute relations (5) and (4):

Ay __ 3wy ! .
By = FeyntF(i—m)*

(6)

L
@lly - Dt o (l—=n)®

F=1—

where.n = 3 1n H/(d 1n R) is the index of the magnetic field.
In the nonrelativistic case formula (6) simplifies to

M e F= TR (7)
The coefficient F 18 equal to unity if
LAy 1 L = 0. In this case formulas (6) and (7) go
o over into the ordinary formula for a circu-

lar proton synchrotron. Since F < 1, it
a; follows therefore that in a magnet with
slots the radius of the equilibrium orbit

|
is more sensitive to frequency deviations

l 1
. n
P - JEA

Fig. 1. Dependence of
the frequency f of the
accelerating field on
the value of the magne-
tio field intensity H.
The circles designate
the values of the ini-
tial frequency at two
injection energies, 4
Mey (H = 10 gausgg
and ? Mev (H e 1
gaussc). 1 , mera=-
cyclesc; 2) H, gauss.

/ ' than is the case in circular accelerators.
an

For example, a frequency error Amb/(qb) -

= + 0.2% leads in the 10-Bev proton synchro-
tron to a displacement of + 11.2 centimeters
in the radius of the orbit, that is, de=-
oreases the employed working region by 22.5
centimeters (in a circular accelerator -~ by

16.8 céntimeters).
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Fig. 2a. Diagram of accelerator.
1) Linear section; 2) sector; 3)
equilibrium orbit; 4) instantan-
eous orbit; 5) magnet alr gap;
6) section A-B.

§3. DERIVATION OF PHASE EQUATION

We shall call an "ideal acce~
lerator with slots" an accelerator
in which the magnetic field in the
linear seotions is exaoctly equal to
zero, while in the sectors it cor-
responds po the fileld in a cirocular
magnet with average radius R, (Pig.
2a). Such an idealization approxi-
mates quite accurately the true mag-
netic fileld in accelerators in which
the ratio of the helght of the air
gap Dh in the circular sectors to

the length of the straight-line sec-

tions 1 is sufficiently small. In the 10-Bev proton synchrotron the ratlo

is Dh/'l = 0.0375. For comparison we can state that in a 180-Mev proton

synchrotron (the model of the accelerator) the ratio is Dh/'l = 0.179,

that 18, almost 5 times larger. Consequently in the model the magnetic

field in the linear section plays a major role, but in the proton synch-

rotron for 10 Bev 1t plays an insignificant role. Consequently, it 1s

meaningful to consider the motion in "ideal accelerator with slots" and

only then take into account the influence of the magnetic field in the

linear portions.

The phase equation can be derived by various means (see, for exam-

ple, [18]. We choose a method which shows quite clearly all the assump-

tions and disregarded factors usually tacltly introduced in the deriva-

tion of the phase equatilon.

It might seem natural to consider thé motion of particles in an

accelerator with slots in a special coordinate system, shown in Fig. 2b.
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The angle vy 1s measured along the oval trajectories, with

e~ ! ’

SR ®
where 8 18 the lgngth along the oval trajectory, reckoned from the
chosen axis. Such a system, however, 1is not orthogonal, is convenient
for the énalysis of free osclllations but is not convenient for the
analysis of radial-phase oscillations. At the same time, the introduc-
tion of the angle ¢ is a very useful device, facllitating the calcu-

lations. It 1s convenlent, for example, to expand the accelerating

e ————

/i

w2° an* 288

Fig. 2b. Coordinate system after
formula (8).

electric fileld ¢, in waves traveling in the directlion of the angle #:

v

!
3= ﬁ'ﬁa(j)cosf‘»‘,(l) dt, (9)

where 6(v) 1s a periodic delta-function, period 2m; Vo is the amplitude
of the potential difference on the accelerating gap

L .
1 == A+ g == gerir;:eter of orbit (20)
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We assume that we have two accelerating gaps at y = O and y = m,
the acceleratins fleld of which 1g in phase. Ii-:2 !+)Y 15 2 periodic

function, we expand it in a Fourier series and obtain:

[
3 —-—ﬁr 'h «Oi[valll-—(Zk—i)'{ (11)
n—{h
Let us write down the equation of motion for the circular sectors.
We know (see, for example, [8]) that in this case the equations assume

the following simple form:

z‘.’;(mi‘) = mri} — ‘—:- 6,

i(mr*ﬂ — -"—") =eahR;
orC 1

at (12)
S (m2) =< ridl,,
where
hr, )= ’-J:Il,nlr.
For the linear sections, obviously, equation
Sn=0; 5 (m)=ex; Z(me)=0, (13)

where 8 1s the length reckoned along the trajectory, Fig. 2b.

Thus, in the linear section r and s are the ordinary Cartesian
rectangular coordinates.

As the zero approximation we choose motion along an orblt with
radius Ry, shown in Fig. 2b (heavy line).

The frequency of revolution on the equilibrium orbit 1is Wy while
the speed 1is Vo = wbRono.

We make use of the smallest of the quantities

0
liy=r TR vy (142)

“0 ngy ’ v
]

and carry out the calculations accurate to their first powers. The
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largest among these three quantities is the last. We introduce the
following notation:

] . F]
r=ltp == %=y

11=n.[1— ma '] ﬂ-—-i+.—';T: (14b)
[ /1 1 7wy,
‘u;="'°"*""°7.—l:o =t

The subscript O éenotes all the quantities pertaining to the equi-
librium orbit. The phase velocity o shows the deviation of the revolu-
tion frequency of the particle along the oval trajectories from the
equilibrium frequency W

It is clear from (8) and (14) that the angle y is related with the
phase ¢ in the following fashilon:

-
1]

[—y

= i (W — LYtz J’m,‘(ll—?. (15)

We substitute relations (14) into equations (12) and (13) and ex-
pand each of the terms contained in it in powers of p/(Ro) and §/(mb),
for example

Uy y=H(i- -y )
Dr, D=4, 1)~ '-ll,, i I8

E-ar=k[1- 2(f —-3% (16)

”u II‘, b

H,=—nll,3 etc.

In the first order we obtaln the following equations, which are simul-
taneously wrlitten out for the circular sector and the linear sections
(Ro = const): .

R

-i_,j_' :i cod L..J wy il = (2k— l)',:f—-

| T )
- B , = (17)
— o+ 15 (-‘ —e)i >
p fc::zu o e,
X dllL ct =g (s )dl( ‘l’c):
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7 (F8) = — Ewiliznsg (1)
A=l ) (17, cont'd)
" Teenbl

where g(v) 18 equal to unity in the circular sector and to zero in the
linear sections. The function g(y) for sectors can be represented in

the form of the following serles:

R
¢(7)=q— . ~inqjcondy+

2= 3= (18 )

S IR PO IR .1
-+ + sin 3 cos 8 iy cos 1274 ...

We proceed to derive the phase equation. As was shown in [8, 24],
of all the sum contalned to the right in the first equation of (17),
the term playing the principal role is the one with k = 1, since all
other terms osclllate rapidly and yleld zero upon averagilng. A rigorous
mathematical proof of the validity of the averaging method can be found
in the work of N.N. Bogolyubov [33]. The component of the wave k = 1
propagates with a veloclty equal to or close to the velocity of motion
of the particles, and exerts a constant action on the particle. All re-
maining oscillating terms merely perturb the motlion of the particles
insignificantly.

We first neglect all the terms of the series in the first equation
of (17), except one. Mathematlically this means that we "spread out" the
action of the two accelerating gaps over the entire oval orbit. In the
same approximation, we can confine ourselves to only the zero term of
the entire series in (18). This means that the action of the vortical
electric fileld, which occurs in the circular sectors, 1s also "spread
out" over the entire oval orbit.

Finally, lnasmuch as the variation of the phase ¢ 18 quite slow
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compared with the revolution frequency, "without inertia," we can ne-
glect in (16) the inertia force d/(dt)(mp).

In this case we obtain from the second equation of (17)

¥ L
L™ a(=a)FKF* T Tobk:* (19)

Substituting (19) into the first equation of (17), we obtain the
principal phase equation:

d ( I d;\_cl'u cos 3 d ( ERyIT e, v'i_{.!)

a\ GiFK ,h) = d & umelt

(20)

The left part of the phase equation (20) differs from the corres-
ponding equation for the circular accelerator in the presence of the
coefficlent F [see (6)].

Let us determine the phase value ¢ = 00 for equilibrium motion.
Since equilibrium motion is realized (by definition) with a resonant
frequency w., the d¢/(dt) vanishes identically and

an o (BRI, ,.,.")
NP =\ T TR/ (21)

Thus, equilibrium motion can occur only for particles which have
completely defined values of the .phase (100). In other words, the equi-
1ibrium particles occupy completely defined places on the orbit.

The phase ¢O has a remarkable and unique property: only this phase
can, under certain definite conditions, remaln constant all the time.
For other phases, no such conditions exist. The quantity evo/(a) cos ¢,
is equal to the energy acquired by the equilibrium particle from the
electric fleld during‘one passage through the accelerating gap. For all
other particles, evo/(a) cos ¢, (as will be shown below) 1is the energy
acquired during one passage through the accelerating gap, averaged over
the perlod of the phase oscillatioqs. Of the two phase values + 00, only
one 1s stable (in the cases of practical interest the phase +00 is

stable). Owing to the singular properties indicated above, the phase



o

°O is also called the "phasing point."
Expression (21) can be converted to a more convenient form. With

the aid of the relation

‘I-."»,,II,,=ccll‘, (22)
we readily obtain:*
oV, cos 3, = 2ndl .Lrl‘) e, (1—2), (23)
where

If A= 1, then cos 9 = 0. This means that in thls case the aver-
age energy obtailned by the protons from the electric field 1s equal to
zero. The acceleration 1s only at the expense of the vortical ~lectric

fleld. By the same token we prove simultaneously that the condition

«io“

=t (=) =1 (25)

is indeed the condition for realization of betatron acceleration in an
ideal accelerator with slots, and replaces the well-known betatron con-
dition &o/(awngﬁo) = 1 (the 2:1 condition). The phase equation (20)

was derived by us for two accelerating gaps. It remains valid also for one
or many gaps, 1f V0 is taken to mean the sum of the amplitudes of the
voltages on each of the gaps.

If we assume in equation (17) that there are no phase oscillations,
that 1s, 1f we replace cos ¢ by cos Oo and neglect the intermittent
character of the increase of the particle energy, that is, 1f we re-
place in the first equation g(y) by 1/M, we obtain the equations for
the fast osclllations. Indeed, in this case we obtaln from the first
equation of (17):

(26)



The integration constant is set equal to zero, for when o = 0 the de=
viation 1s p = 0. Substituting (26) in the second and third equations

¢

of (17) we readily obtain:

SED) + Eall13 (1 — n)pg (3} =0

27
-:—‘ (E2) -+ Ewlilnzg (1)=0, (27)

The solution of equations (27) i1s the subject of Chapter 2. The
separation which we made between fast and slow motions is physically
obvious. In addition, a number of papers is devoted to a rigorous proof
of this fact [6, 8, 24], so that this separation cannot ralse any doubts
whatever.

We note in conclusion that the phase equation for the accelerator
with slots was first derived by us in the fall of 1948 and was used in
the development of preliminary sketches and technical designs of the
proton synchrotron of the USSR Academy of Sclences and its 180-Mev
model.

§4. SOLUTION OF PHASE EQUATION IN THE FIRST APPROXIMATION

Equation (20) will be solved by the method which we developed
[6, 8] for the solution of phase equations of cyclic accelerators.

We shall pay principal attention to the singularities of the phase
equation for an accelerator with a slotted magnet as compared with the
phase equatlion for a circular accelerator, since the latter was inves-
tigated in detall by the author [6, 8] and by others [9, 38], and 1s by
now well known. In addition, in the present sectlon we obtaln several
relations which will be used in chapters 4 and %, devoted to the theory
of resonance and injection theory.

The fundamental equation (20) can be rewritten, with the aid of
the expression (23) for cos 00, in' the following simplest form:

do B dg\ V0 oy nam a0 00x 5g
af(ﬁlhﬁdz) i C9? g TO7 0 (28)
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We recall that E, K, F, and wo(t) are specified functions of ite
time, which are calculated in fact from the following equations:

7 . o —1 .
= “‘/’— ) F=l—gmi—ar’ (29)

1
_l.:'l—n,#

In the first approximation all the coefficients of equation (28)
can be regarded as independent of the time. In this case equation (28)
is equivalent to the equation of an ordinary pendulum with external
moment. As 1s known from pendulum theory, three types of motion are
possible:

1) equilibrium motion, equivalent to the equilibrium position of
the pendulum: ¢ = 9, ® = 0;

2) oscillatory motion about the equilibrium motion, equivalent to
osclllation of the pendulum about the equilibrium position. The phase
velocity ¢ 1s equal to zero only in the mean. The phase ¢ varies within
certain restricted limits;

3) nonresonant motion, which deviates gradually more and more from
equilibrium. This case corresponds to rotation of the pendulum. The an-
gular velocity 9 increases on the average. The phase ¢ changes 1in one
direction.

Let us carry a quantative calculation. Integrating (28) once (after

first multiplying it by @) we get:

=y !/-—-—-lnn--—-?cos?o-f-a], (30)

where a 18 the integration constant.

Let us find the range of values of the constant a, corresponding
to oscillatory motion. The expression D (¢) = sin ¢ — ¢ cos ¢ has a
maximum when ¢ = + %0 and a minimum when ¢ = - ®o° A plot of the func-
tion D(9) is shown in Fig. 3. The interse;tion of the plot of D(9) with.

the line D = — a determines the values of the phases, at which $ vanishes.
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In oscillatory motion, ¢ should vanish many times. For this purpose the
line D = —a should cross the curve D(9) at two points. The two crossing
points merge into one at the maximum and minimum of the function D(Q),

and therefore
@ oy = Sl 3, — @, CO8 7,
By ==~ gy =g, cu08z 2,
43;
g2l
_y_’zlp 4" 'I’m
-{2'{0-4’1-.73-@6-4 7J 2 Y L 42 ¢ 7 161N\ /z
-m
~— 49
-E‘
-q’

Fig. 3. Plot of the function D(¢)
for cos P = 0.5.

Thus, the range of variation of the constant a is determined by
the inequality

JaJising, g cosz,,

(31)

As can be seen from the inequality (31), for the existence of a
certain nonvanishing region of constant a, which would correspond to
oscillatory motion, it 18 necessary to have |cos ¢o| < 1. When
|cos ¢°| > 1 no phasing point %9 exists, and all the values of the con-
stant a lead to nonresonant motion. Indeed, in this case D(9p) = sin ¢ -
- ¢ cos ¢, is a monotonically decreasing function of ¢, and for all
values of the constant a the expression 8in ¢ — ¢ cos 99 + & can vanish
only once. Consequently 6 can likewise vanish only once, and in order
to realize oscillatory motion ¢ should vanish many times.

We can express the constant a in terms of the initial conditions:
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We recall that E, K, F, and mo(t) are specified functions of ite
time, which are czlculated in fact from the following equations:
ks . N (Fad, e R
k= iy =’=‘/1_('l? V F=—gti—r (29)
K LI

=1

K.Y

%

In the first approximation all the coefficients of equation (28)
can be regarded as independent of the time. In this case equation (28)
18 equivalent to the equation of an ordinary pendulum with external
moment. As 1s known from pendulum theory, three types of motion are
possible:

1) equilibrium motion, equivalent to the equilibrium position of
the pendulum: ¢ = 95, § = 0;

2) oscillatory motion about the equilibrium motion, equivalent to
oscillation of the pendulum about the equilibrium position. The phase
velocity ¢ 1s equal to zero only in the mean. The phase ¢ varies within
certaln restricted limits;

3) nonresonant motion, which deviates gradually more and more from
equilibrium. This case corresponds to rotatlion of the pendulum. The anw
gular velocity é increases on the average. The phase ¢ changes in one
direction.

Let us carry a quantative calculation. Integrating (28) once (after

first multiplying it by ¢) we get:

'.;'a:—.\»o,/ci—‘_‘_'zll—::—':lsin;—9005%-{-(1]_, (30)
where a 18 the integration constant.
Let us find the range of values of the constant a, corresponding
to oscillatory motion. The expression D (¢9) = sin ¢ — ¢ cos %) has a
maximum when ¢ = + ? and a minimum when ¢ = — ?0° A plot of the func-
tion D(¢) is shown in Fig. 3. The intersection of the plot of D(9) with.

the l1ine D = —- a determines the values of the phases, at which $ vanishes.
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In oscillatory motion, ¢ should vanish many times. For this purpose the
1ine D = —a should cross the curve D(p) at two points. The two crossing
points merge into one at the maximum and minimum of the function D(9), ..

and therefore

By = Sil 3, =0, COK 3, ;
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Fig. 3. Plot of the function D(9¢)
for cos P9 = 0.5.

Thus, the range of varilation of the constant a is determined by
the inequality

a7 sy gt 3t
Ry 2

(31)

As can be seen from the inequality (31), for the existence of a
certain nonvanishing region of constant a, which would correspond to
oscillatory motion, it 1s necessary to have |cos ¢o| < 1. When
|cos vol > 1 no phasing point ¢, exists, and all the values of the con-
stant a lead to nonresonant motion. Indeed, in this case D(¢9) = 8sin ¢ -
~ 9 co8 ¢, is a monotonically decreasing function of ¢, and for all
values of the constant a the expression sin ¢ - ¢ cos 99 + & can vanish
only once. Consequently 6 can likewlse vanish only once, and in order
to realize osclllatory motion 6 should vanish many times.

We can express the constant a in terms of the initlal conditions:
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the initial phase velocity 6nach and the initlal phase ¢, ... From (30)
we get:

| a —_.-'(g-'ﬂ-). (-c_lzo!;_l") — N0 Pay T+ Puraw c.‘m Pue ‘

According to the foregoing relation, the initial conditions should
satisfy the following inequality:

' ‘ Sray\? d . ) .
i ( ,L,‘l.!) (?l'%lﬁ-") ~ 81l Juay + Puay COS ','«,,"; & sin g, — g, con S (32)

Fig. 4 shows the region of initial conditions for different values
of cos 99 satisfying inequality (32). If we replace the inequality
sign of (31) by an equal sign, we obtain the separatrix curve, which
separates the reglon of initial conditions that lead to oscillatory
motion from the region of initial conditions that lead to rotary nona-
resonant motion. ‘

We see that the separatrix encloses the maximum area when cos Qo -
= 0 and contracts to a point when cos ? = 1.

Of the two singular points #+ Py on the phase plane, one 1s a center
and the other is a saddle. If KF > O, then 1t 1s obvious that the stable
phase 18 9 = g,, and the unstable one 1s ¢ = - g, (Fig. 5).

If KF > 0, then the character of the singular points changes. The
stable phase 1s ¢ = %o and the unstable phase 1s ¢ = + ?0° |

The coefficient K > 0, if n< 1, and K< O, 1if n > 1. Ihasmuch as
it 18 necessary for the stabllity of the fast oscillations in acceler;-
tors with ordinary focusing that n be smaller than unity (see below),
the case K < 0 will be considered only in Chapter 6.

The coefficient F 1s a monotonic function of the energy (Fig. 5);
it has a minimum when 8 ~ O and a maximum when B8 = 1.

Fon=1 —_t .
2l - 1"
. I ' (33)
F E P
min n (2’7/!'"?" L)'
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Fig. 4. Phase plane and separa-
trices for different .cos P9

We see that Fmax is always larger than zero. Fmin may prove to be
smaller than zero if the length of the linear sections is sufficliently
large or n 1is surfic%ently small. In this case the stable phasing point
is - 99 and the unstable one + Po° Of course, 1t 1s immaterial for the
operation of the accelerator which of the two points 1s stable. It is
sufficient that one of them be stable., However, ?or relativistic parti-
cles (B = 1)‘Fhax>'03 hence if If, < O, then F = O at some instant in
acceleration to relativistic energles. At that instant there exists no
phasing point at all, and the phase pattern becomes changed. Large par-
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ticle losses are possible then, for the two stability reglons overlap

only in part.
TS
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Fig. 5. Plot of F as a function of the energy
for different values of n.

Therefore, for an installation such as the 10 Bev proton synchro-
tron, in which the particle velocity varles over a wide range, we should

stipulate that F&in be larger than zero:

£, >0 or /";<!_-'.; . (34)

The condition (34) must of course be satisfied with a margin,
since, as will be shown below, small values of Fmin are not desirable.

The condition (34) affords, generally speaking, a great freedom in
the cholce of the length of the linear portions, but it 1s nevertheless
a more stringent limitation (in the region of values of n of interest
to us) than the condition which will be derived below for the stability
of the fast osclllations.

Usually a condition (34) 1s satisfied with a 6 to 10-fold margin.

For example, for the 10 Bev proton synchyotron, F

tion (34) is satisfied with a 9-fold margin.
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The occurrence of stability of the phasing point - 9 for a suf-
ficient length of the linear sections, and the rearrangement of the
phase region during the acceleration process, can be illustratively ‘ ‘)
interpreted. We can state that an accelerator with slots presents a
combination of annular and linear accelerators. It is known that in
linear accelerators the stable point is - LY and in annular ones 1£
is + 9y The reason for it is that in linear accelerators the transit
time between two passages through the accelerating slot decreases with
increasing velocity, while in annular ones it increases. When the length
of the linear sections 1s sufficlently great, the phase properties of
the linear accelerator predominate over the phase properties of the
annular accelerator. However, when B = 1 the phase stability of the
linear accelerator disappears, that 1s, the transit time ceases to
depend on the energy, and therefore, no matter what the length of the ‘
linear sections, when f .~ 1 the phase properties of the annular accel- |
erators prevail.

. The concept of critical energy Ekr’ which we were the first to
introduce, and at which the phase region changes and phase stability
is lost, has particular significance for accelerators with strong
focusing. We have subsequently also shown how to eliminate the critiocal
energy. In ordinary accelerators with weak focusirg, the critical energy
is eliminated by suiltable cholce of the index n. Concerning strong
focusing, see Chapter 6.

Let us determiné the amplitude of the phase oscillations., Let
01 < ¢0 and 9 > %% be the extreme points, between which the phase o8-~

eillations are carried out. At these points ¢ vanishes:

LRF -t :
2 =‘/£—_”£L I8ing - s o, =8y, u e, (35)

gy

We obtain the value of 9% by drawlng from the following trans-
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cendental equation:

x 8D @, — €08 P, 8in g, -

i Et i €Y
“ Inasmuch as 8in @ - ¢ cos 9, has a
“ minimum at the point ¢ =-9y, it 1s
:: f obvious that the smallest value of
Qir the phase is 9 = -9y The largest
@} I value of wé 1s obtained from (36)
N by putting ®; = @

a;i;/‘ 7w ei P o T iy '?s...—.‘iga?%? =g 90— - (37)

s p,

Thus, the greatest swing in the
Fig. 6. Ratio of maximum

region of stability with res- phase oscillations is °2 + Qo.
pect to ¢, for different va- max
lues of cos Pos to the stabi- Figure 6 shows a plot of the depend-

1ity region when cos @ = O
and for values of cos ¢O from
Otol in steps of 0.05Y the
values of ¢ (er) are

ence of (¢ + 9.)/27 on cos @
2max 0 0o’
obtained with the aid of numerical

S?gggftéfeig’egu7%8foé %28?0’ calculations. The radial oscillations
g.ggi’ g:ggﬁ; 8.3332 8'328; connected with the phase oscilla-
8:228? 8:3??; 8:%22; 8:312; tions (the radial-phase oscillations)

can be determined from Eqs. (19) and
(30):

_-__]/RA“‘““_"“\aum——vcm?,-—a\ (38)

Figures 7 and 8 show the trajectories of the radial-phase oscllla-
tions against the background of the chamber dimensions. The trajec-
tories shown can be treated (when B2 << 1) as prevailing in a coord-
inate system moving together with the equilibrium particle (of course,
free oscillations are disregarded).

The amplitude of the radio oscillations is obtained from (38), by

putting @ = 9,:
- 61 -



~le
]

SV AR AR

Fig. 7. Phase region at the start of ac-
celeration (W, = 4 Mev) at a voltage Vo =

= 8 kv in variables p and ®: 1) Separa-
trix at the start of acceleration; 2)
separatrix at the end of acceleration.
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Fig. 8. The same phase region as in Fig.
Z, but for a different injection energy
W

1

= 10 Mev).

; " .
7.{'=|/,m*;—{r_—“,.,».-(sm $o— Po €08 3, = a)y (39)

. B Z==gill 3, + 9, COS Py,

where PaA denotes the amplitude of the radlal-phaseoscillations. The
greatest amplitude of radialosclllations will be denoted by '5 The
value of p is obtained from (39) by putting P = =9t
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Fig. 9. Connection between
the amplitude of the radio-
phase oscillations p, and the

relative swi of the phase
oacillationsnive«- °1 /2n, at

different values of cos ¢o.

In motion along the separa~
trix we have p, = .

obtain

el .,I\ 7

_‘ r— ‘»

] - el ,,..:f'in";:,. . i
'Il;—:/;'.'h'f‘l;,-l‘x ‘_’;,::“ Tl 'L (llO)

Figure 9 shows the dependence
of the relative amplitude of the
phase oscillations (9, — 01)/2" on
the relative amplitude of the rad-
1al-phase oscillations pp/P for aif-
ferent values of cos 9°

With the aid of Egs. (16),
(19), and (30) we can find the en-
ergy scatter of the particles AR:

YTyt ()

The amplitude of the energy
fluctuations (AE), and the largest
amplitude AE is determined in the
same manner as used for the radial-
phase oscillgtions.

Integrating (30) once more we

b= - d7_
H Vaing—pcoas, =&

The integration can be carried out in the general case only numerie

cally. However, the expression obtained enables us to determine the

frequency w, of the phase oscillations. During one period of the phase

oscillations Tl = 2w/w1 we can assume that Wy K, F, and E are con-

stant, and then
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Fig. 10. Prequency (in cycles per second) of
the phase oscillations; V, = 10 kv (vertical

scale) and different values of the magnetic
field index n (from n = 0.75 for the upper
curve and n = 0,55 for the lower one with in-
terval 0.05). The same figure shows the con-
version coefficient for the calculation of
the frequency of the phase oscillations for
other values of V, (right-hand scale). 1) cpe;

2) conversion coefficient; 3) kv.

T i | s (42)
where 9 < %% < P The phases 9 and 9 determine, as already men-
tioned, the amplitude of the phase oscillations.

Figure 1l shows a‘. plot of the values of the integral contained in
(42). So long as lvl - °0| << 1, the value of this integral is con-
stant. As |01 - qaol increases, the integral also begins to increase.
When ?) = -9 the integral tends to infinity.

We introduce in place of the phase ?) the deviation Gmax from the
phasing point: a . = 9o = 93+ The Integral (42) can be evaluated
analytically, if we assume that Arax << 2 9o In this case® (see Fig.
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[

ds
‘L VN @ = 9 c05 ) — BiIR§; = cO8Fy
as a function of ? and 95 The

value of wo for each curve 1is

marked by lines and arrows

10) we have

= e v --—- - 1—-—-‘-'- “"'-I."-",)—'—:“. -7-...}. (u3)

[ onl L KRN 3 HEAR

Thus, the frequency of the phase osclllations in an accelerator
with slots differs by a factor vri.from the frequency in an ordinary
proton synchrotron (disregarding the fact that wy 18 Ny times
smaller than in a circular accelerator).

The results of this section serve also to prove the correctness
of the assumptions which we have made ins the derivation of the phase

equation. Indeed, it 18 easy to show, for example, the correctness of
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Relations (14) when W, >> eV,, which 1s always the ocase.
$5. SOLUTION OF PHASE EQUATION IN SECOND APPROXIMATION -

. We now prooceed 4o dotomifu the second approximation, which '
should take into acseount the influence of the changes in the coeffi-
cients of Eq. (20) on the change of the particle phase, i

- The solution ;}vm.in the preceding section i1s valid only when
the parameters are constant. But if the mnqtic- field, the frequency,
and other parameters of the apparatus change,aurﬂciontly slowly, then
the particle motion can be described as being successive transitions
from one trajectory, obtained in the preceding section, to the next
trajectory, that is, from motion with one integration constant a and
several values of the parsmeters K, F, E, and g to motion with ano-
ther constant and other values of the parameters. The integration con-
stant and the parmotcés change here so slowly, that at each given in-
stant the motion can be described in the same manner as before. In
other words, at each given instant we can regard the motion as occur-
ring on a definite tr;Jectory calculated in the preceding section.

The law governing the variation of the integration constant or,
what is the same, the law governing the variation of the oscillation
amplitude, 1s determined with the ald of adiabatic invariants. The-
adisbatic invariant of a system with one degree of freedom is the in-
tegral fpdq, taken over the entire period of oscillation. In our case
the role of g 1s assumed by the phase ¢, and the role of p = mq is as-
sumed by the quantity B #/03 K P, since E/a2 K F plays in Eq. (20) the
role of the mass (or the moment of inertia).

The adiabatic invariant (apart from the constants) ocan be write ‘
ten in the following form: .

_; VAL =g g, - ady. (44)

Yo

Javs= I/
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From this we obtain the dependence of a on the time. In the general
case the Integral (44) cannot be evaluated in terms of elementary

functions. Figure 12 shows a plot of the function

hoy, -
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Fig. 12. Plot for the calculation of the variation of
the phase-oscillation amplitudes upon change in the
accelerator parameters. 1) Scale for a.

The use of the graph in Fig. 12 is very simple. A horizontal line
crossing any curve gives the initlal values of ay and Gye Fof conven-
ience, each pair of curves pertaining to different values of cos L2
starts from different points. Therefore the values of ey and G, (in
radians) should be reckoned for each curve from its own origin. The

ordinates of the curve yleld the values of the integral q/?i

I_'T"'." vU (cos 3,0 3,5 ay)

when the parameters are changed, the productgyugkf !
should remaln unchanged. Therefore the horizontal line 1s displaced éo
such an extent, that the indicated produét remains constant. The new
points of intersection determine new values of a, and Qe When varying
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cos @, it is necessary to move horizontally to a second curve, corres-
ponding to the new value of cos LY and the intersections again deter-
mine the new values of ay and a,.

The graph presented should be used only for sufficiently large
oscillation amplitudes. Let us assume that the oscillations occur only
in the vicinity of Po° We make a change of variable ¢ = P+ G and
carry out the calculation with accuracy to a2. In this case

Rz (45)

i Y

In the relativistic case K, F, and wq are constant, whilé the en-
ergy ﬁ is proportional to H, and therefore (when Vb = const) cmax -
= (wo- vl) is proportional to H'l/u. In the nonrelativistic case it
18 necessary to take into account the time dependences of K, g and
F, and the result will depend on the value of the magnetic field index
n.

Figure 13 shows the dependence of qmax/(amax)nach on the particle
energy for constant values of Vb and sin ¢0, and for different values
of the index n. Let Vb, Ro, and % remain unchanged during the accel-
eration process. We stipulate that under these conditions %nax mst

decrease all the time, that is, we require that the inequality

da/dtmax < 0 be fulfulled. This requirement is equivalent to the condi-

tion (a/dt)(K F w5/E) < 0. In carrying out the differentiation we take

account of the fact that Wy = wca where w_ = const. As a result we get

c
] ' N [X "y L K I
drms [ 2(1— ) — K¥ o T ey 1< (46)

where b2 is a positive quantity. The expression in the left half of

the inequality decreases with increasing ﬂa. Therefore, 1f this in-
equality is satisfied when B° = 0, it will be satisfied for all other

values of 52. We thus obtain
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The Condition (47) replaces the condition n > 2/3 which we de-
rived in 1946 [4] for a circular accelerator.

If n < Nyps then the amplitude of the phase oscillations will
first increase and then decrease. In the cases of practical interest
this increase in amplitude 1s small. The increase in amplitude con-
tinues up to a certain energy value Ekr' We obtaln the value of Ekr
from (46) by replacing the inequality sign by an equal sign. Indeed,
the vanishing of (46) denotes the reversal of the sign of damax/dt:

Ly =EN3(t—n)ll,, (48)
(
17
w —=
“:"ma:)ncu
h 7y
15}
4 15t
. 14t
gy %]
12
gy i
(” _—y i ' " A A A
g5 9 qz2 g5 g5 g8 Q0
n
g%g& 13. gependence Fig. 14, a/(a.ma_x)nach as
max’ ‘\ 'max’/nach a function of the values
on the energy for of n for the 10-Bev pro-
the 10-Bev proton ton synchrotron param-
synchrotron data eters (L/R = 8/7%.

(L/Ro = 8/7).

It 1s obvious that the amplitude of the phase oscillations huas 2
maximum when E = Ekr' Let us calculate the ratio of the largest ampli-

tude G of the phase oscillations to the initial value:
- 69 -



s v o

4 \‘/ ] ;
Cmatdisy YV 3aV3(T=5) 17, F mia (49)

The ratio a/(amax)nach

definite value of L/Ro.

§6. PHASE EQUATION WHEN THE MAGNETIC FIELD SPILLS OVER INTO THE LINEAR
SECTIONS '

as a function of n is plotted in Fig. 14 for a

The phase equation for the case when a magnetic field exists in
the linear section 1s derived in perfect analogy with the case of the
"ideal accelerator" (without a field in the linear section). In the
derivation it 1s necessary to take into account the distinguishing
features of the "nonideal accelerator" with slotted magnets. We shall
therefore start to discuss these singularities, without obtaining the
entire derivation.

Let us consider by way of an example the case of a field H, which
is constant in the gap in the x and y directions (see Fig. 15). As
will be shown 1n the next chapter, if a fleld 1s present in the linear
portion, the magnet sectors will subtend not an angle w/2, but n/2 -60,
where 60 is the angle through which the particle trajectory is turned
in the linear section. We shall measure the lengths of the linear sec-
tions from the points A and B, in which the field 1s only slightly
different (at the accuracy which interests, say by 1%) from the field
inside the gap.

If the particle moves not along an equilibrium orbit, but is dis-
placed as a result of the radial-phasemotion, then the center of curva-
ture will shift from the point C to the point O and the tangent to the
particle trajectory will turn not through an angle 60, but an angle a
(Fig. 15). Considering the Triangles ACB and AOB, we can find the con-

.w'tion between the angles o and 60:
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The length of the circular trajectory of the particle in the linear
portion 1s:

L
T

L
= ra=ry,- = ——:33 ~+ 2%
Consequently, the perimeter of the orbit can be written in the follow-
ing form:
R(2r—43) + Loy + 420y =
=2zl + Loy — 43, (R—p)
Putting Ly —4R@,=L*, we write for the perimeter of the orbit: 2mR + L’
Thus, the coefflcient 11, de-

fined by Eq. (10), assumes the fol-

lowing form:
Le*
mr=1+zz- (50)

In analogy with the foregoing,

the magnetic flux ¢* (R,t) through

the orbit of radius R also changes,

AT since 1t is necessary to take into
account the magnetic flux in the

Fig. 15. Diagram explaining linear sections. The coefficient F
the symbols.
is likewlse changed:

N —1

Fe=1 T oL, n— R (1—n)] "

After going through all the steps for the derlivation of the phase
equation, we can show that the form of the phase equation does not
change if 1, F, &, and L are replgced by Ii*, F*, ¢o%, and L*. Indecd,
Eqs. (17) for the circular part of the magnet obviously remain the
same. Nor are the equations for the straight line portions changet !~
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we write for g(y) in the linear portions H,/H,(R,) and put g(y)5T =
= 1/n%,
In radialaccelerators, however, the magnetic field is not con- ¢

stant along the particle trajectory. But it 1is clear from the forego-

ing arguments that the dooilivo role is played by the angle of turn of
the particle trajectory in the linear section, and not the form of
Hl(x). Therefore, if Hl depends on X, then all the formulas will con-

. .
taln the average quantity.lf::%-{ﬁhoﬂdh. since this is the quantity

responsible for the turning of the particle trajectory (see Chapter 2,
§4). The law governing the variation of H1 along the y axis has been
shown by detalled calculations to influence little the motion of the
particles under rather broad assumptions concerning the magnitude of
the change in the field.

We have assumed in the preceding calculations that the presence
of the field in the linear portions 1s taken into account in the con-
struction of the magnet. The sectors have been made smaller by an
angle 60, 8o that the equilibrium trajectory in the round sectors is
part of a circle of radius R. If the correction for the angle 60 has -
not been made or has been made ilnaccurately, then, as shown in Chap-
ters 2 and 3, the particle trajectory becomes distorted, but its ‘
tength remains constant, accurate to (p/Ro)a.

§7. ACCELERATION IN MULTIPLE RESONANCE

As will be shown in Chapters 4 and 5, it may be convenient to use
:mltiple resonance between the revolution frequency and the accelerat-
sng-field frequency. For example, it will be shown in Chapter 5 that
w~1er certaln conditions the intensity of injection increases in mul-

" ~ir. resonance. It 1s indicated in Chapter 4 that 1t is possible to

.~ .i the undesirable resonance between the high frequency pertuba-
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aid of multiple resonance.

In addition, in multiple resonance the accelerating system with
two gaps and a single linear séction operates more effectively.

A detalled investigation of the multiple-resonance conditions
(for a round accelerator) was made in considerable detail in [39). In
the present section we touch briefly only upon the general and princi-
pal problems'of the multiple acceleration mode, As far as we know, our
investigations are the only theoretical wofk devoted to this problem.
The first actual multiple acceleration mode was realized by A.M. Pro-
khorov [40].

Let us assume that the frequency of the accelerating electric
field 1s g times larger than the frequency of revolution of the equi-
1librium particle:

wg (4} = qte

If we have accelerating gaps in only one linear portion, then g
can assume arbitrary integral values.

In what follows it would be convenient to use the following nota-
tion: ¢ denotes, as before, the phase of the particle in degrees of
the high-frequency accelerating field; ¥ 1s the phase in degrées of
the particle trajectory (at angles v). If q = 1, then ¢ and ¥ coin-
cide. They are obviously connected by

‘ (51)

T A%
‘f—',,—+2=7; $=

<}

where N is an integer smaller than g. In multiple resonance, the mo-
tion of the particle is in resonance not with the first but with the
q-th harmonic of the expansion (11) of the accelerating field in a se-
ries of traveling waves. For this purpose, we must obviously satisfy

the condition 2K - 1 = q [see (11)]) or K = (q + 1)/2. From this fol-
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lows, incidentally, also the condition that g must be odd in the case
of two accelerating gaps, since K 1s an integer. In the derivation of
the phase equation oniy the relations between the rre,quency'or the ag-
celerating field and the particle revolution frequency change. Thus,
for example, Eqs. (14) and (15) are now rewritten in the form

‘q—;",-=‘"o—-¢ or q(~‘}-i- "e)=“u.: ’
! % (52)
g1 == I ot e e dt gy 4223, ‘i

Consequently, if w, is replaced in Egs. (17), (20), and (28) by
mo/q, and & is replaced by 9/q, we obtain the phase equation for the
case of multiple resonance. For example, in place of (28) we write

Al La_de)  eVecosy _ Vecong
di L:rx dl] o 2= (53)

Equation (53) differs from (20) and (28) in that the first term
on the left has a constant coefficient g.
Let us integrate (53). In analogy with the foregoing we obtain:

(54)

-~ ¢|\I\f-"' .
. ;/-.-.'q‘:«?‘(""“"—"’m?“'!'a)'

N

Comparing with (30), we see that 9/w, decreases by a factor ﬁ Inas-
much as Relation (19), which connects the radial deviation p with 6/00,
rémaina unchanged, in the case of multiple resonance (but other condi-
tions remaining equal) the amplitude of the radio oscillations de-
creases by a factor ﬁ The amplitude of the energy oscillations (AE) A
also decreases by a factor ﬁ [see Eqs. (38)-(41), whose right half
should be divided in our case by ,/q).

Let us find the frequency of the phase oscillations by the method
of §4 [see (53]:

o TR E Sl g
W) == oy, ;’. ——3'-:;‘—,-[5——'-' . (55)

Thus, the ratilo “’1/""0 is \/-cr smaller than berore', but w, is ob-
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viously larper Ly the same amount. It is obvious that this circum-
stance can be used if @, must be changed in order to avoid some undes-
irable resonance (see Chapter 4).
The stability region can be determined from equations of the type
(32):
¢m‘l 1 il < I H
I( —= ) ToRT S 95y 910y €08 R 81N 9y — 95 €08 9. (56)

u~°\ q

We see from this equation that the stability region, plotted
in the coordinates (9, ¢), remains the same if the ¢ scale is left un-
changed, but & 1s multiplied by y/q. In the ordinary scale, all the
dimensions in the direction of the 9 axis are contracted by a factor

1/;; while in the direction of the ¢ axis they remain unchanged.

Cencininiivesy

Fig. 16. Phase plot for cos P = 0.6
and multiplicity q = 3 against the

background of the accelerator cham-
ber. 1) Separatrix.
In place of the  we introduce the akis p, using the fact that p
1s proportional to ¢ [see (19)]. In this case (56) is rewritten in the
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form
l(;n:.& N JL“- KE#(—n)—sing, -'-o. cos %! < sing,— g cos g, (57)
Xy
]

On going over from degrees ¢ of the high frequency field to de-
grees of the particle trajectory, we make use of the first formula of
(51) which signifies a change in scale along the ¢ axis by a factor g,
and a transfer of the origin by an amount 2nN/q. When the phase ¢ va-
ries between 0 and 2, the phase V¥ varies between O and 2n/q. Inasmuch
as (57) is periodic in ¢ with period 2v, the period in ¥ 1is 2n/q. Con-
sequently, the separatrix separating the stable region (57) from the
unstable one, 1s contracted by a factor q on changing from ¢ in de-
grees to ¥ in degrees, and is repeated g times in identical fashion
over the extent of the interval O < ¥ < 27, as shown in Pig. 16.

Thus, in g-fold resonance we have q particle beams in the accel-
erator. It is easy to see that the total area q of the separatrixes,

1/2 smaller than the area of one

in the case of g-fold resonance, 1s q
separatrix in ordinary resonance. ]

When the intensity is calculated in Chapter 5, it 1s necessary to
know the connection between the amplitudes of the phase and radial os-
cillations. figure 9 shows the dependence of (¢2 - ¢1)/2n on pA/p for

q = 1, where 9 and 9, are the extreme points of the phase oscilla-

N

tions, When q # 1 we are interested in the sum - "/ (i,—¢,), Where Yoy
and *ﬁi are the extreme points of the phase oscillations in the i-th

beam. It is easy to see that as a result of (51)
(Sl £ '"".: : (Fee = 1ede

Thus, the plot in Fig. 9 can be used also in the present case. It must

be remembered, however, that, other conditions being equal, the maxi-
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times smaller than usual.

Multiple resonance has the same effect on the magnitude of the
radial oscillations as a reduction in the amplitude of the accelerating
voltege. But a reduction in the amplitude of the accelerating voltage
simultaneously decreases the region of stability with respect to the
coordinate ¥. At the same time, the transitign to multiple resonance
does not change the region of stability with respect to ¥. The influ-
ence of multiple resonance on the intensity will be investigated in
Chapter 5. It can be stated here that the "convenience" or "inconven-
ience" of multiple resonance depends on the dimensions'of the separa-
trix and on the dimensions of the accelerating chamber. It therefore
turns out that in the 180-Mev model, where the separatrix is very
small, multiple resonance is harmful. In the 10-Bev proton synchrono-
tron, at an injection energy of 4 Mev, it is convenient to use multi-
ple resonance.. An increase in the injection energy by q times affects
the stability region in exactly the same manner as g-fold resonance.
Therefore, at large inJection energies (20 Mev) it is "inconvenient"
to use multiple resonance. In addition, multiple resonance can be used’
for certaln physical experiments, in which it 1s essential to obtain
short particle pulses striking a target.

[Footnotes]

Manu-
script
Page

No.

53 It is easy to show with the aid of Relation (21) that if

Ry # O, then
Wﬂmw-gﬂ&i§kﬁﬂﬂ—JL%“—A”WT%. (23')
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@, 18 calculated with accuracy to “:ax in Chapter 4 [see
(4, 84)].
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{List of Transliterated Symbols)

Hau = nach = nachal'nyy = initial
KP = kr = kriticheskly = critical
30 = ef = effektivnyy = effective

CP = sr = grednly = average
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Chapter 2
FAST OSCILLATIONS OF PARTICLES
§1. Introduction
Fast oscillations in accelerators with slotted magnets were in-

vestigated in [32, 38). However, as will be shown below, the calcula-
tion made by Dennison, Berlin, et al did not make it possible to ac-
tually estimate how the linear portion really 1nfluencéd the operation
of the accelerator. Moreover, the criterion of the influence of the
linear portion as introduced by Dennison and Berlin is the so-called
quantity P2, the ratio of the maximum to the minimum oscillation amp-
litude, which, as will be shown below, has no physical meaning. Thease
calculations did not make it possible to estimate the influence of the
presence of tne linear sections on the particle intensity. All these
questions were completely solved again in the works of the author to-
gether with A.M. Baldin and V.V. Mikhaylov [17-19, 22] in 1949-1950.

The present chapter 1s devoted to the motion of particles in the
so-called theoretical magnetic field, which will be defined below.
Other important questions concerning the motion of particles, which
were not at all discussed in the literature, namely the motion of the
particles when the magnetic fileld deviates from theoretical and reso-
nance phenomena in the motion of the particles, will be developed in
Chapters 3 and 4. An account of the influence of the linear sections
on the intensity of the accelerated beam is also investigated in Chap-
ter 5. '

In the present chapter we consider the motion in a constant mag-
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netic field; an account of the variation of the magnetic field is
given in Chapter 4 (§§2 and 3). This question is treated separately in
Chapter 4 in order to avodd repetition. In Chapter 4, in considering
the passage through resonance, we are forced all the same to regard
the parameters of the equation (the magnetic field, the index n, and
others) as variable quantities.

§2. Calculation of Particle Trajectories in an Ideal Accelerator with
Slots

We must solve Egqs. (I, 27) which were obtained in the preceding

chapter. In the first part of our calculation we use the method pro-
posed by Dennison and Berlin (32]. Namely, we solve the equations
(I, 27) separately for the circular sectors and for the linear por-
tions, and then "Jjoin" these solutions.

The fast motions in the circular sectors have been thoroughly in-
vestigated. The basic results are universally known. We formulate only
those premises, which will be used later on.

We write down the fast oscillations in the circular sectors in
the form

£ =4 sinww -~ Dcoswl, (1)

where x denotes either p or z, and

w=. o= "

==
K = 4 1l — n for radial oscillations and x = 4/n for vertical oscilla-
tions.

The amplitudes of osclllations A and B decrease with varying mag-
netic field in proportion to H‘l/é. Inasmuch as the fast oscillations
ocan be regarded independently of the radial-phase oscillations U, the
principal results can be obtained by means of an analysis in a constant
magnetic field, lndependently of thé increase in energy. We therefore
assume 1in the present chapter H = const.
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As in the case of slow oscillations, we consider first a motion
in an ideal accelerator with slots. In this case we can write an equa-
tion of the type (12) for each sector.

For example, for the k-th slector:

= g ity = Ly o ot (2)
For convenience we measure the time for each sector from the instant
that the particles enter in it (therefore we gse tk in place of t in
(2)).

Iet us find the connection between the amplitudes (Ak, Bk and
Ay Bk+1) in two neighboring sectors of the magnet. In the linear
section of an ideal accelerator with slots, there is no magnetic fleld.
Therefore the particle will move along a straight line. This means that
).( does not change during the time of flight, and y changes by an amount
).Q/v, where 1 is the length of one gap and v = Row 1s the velocity.
Taking these conslderations into account, we readlly obtain

V- =

Agcos T‘J;,i — Besiu .j\':f= .-x“‘,. (3)
Ay sin "\71 + 1 con '\1= -—l—k—vl)—l— + Bk+l'
Here xk(v) is the value of y, at the end of the k-th sector

Zk (v): we [.‘h cus 'E:.;I:‘ —1)‘); sin 3;—1:] \ (u)

N is the number of sectors.

We introduce the notation

Qnn RELS 2

{n. .2
o, =g p‘::_;]’:‘, s=sinse, c=cos . (5)

Then Eq. (3) assumes the form

Akc_B‘-s= -4k.]v }
Ay (8- 2pc) = 1, (¢ — 2ps) = Bo,e

(6)

From the system of the two first-order difference equations (6)

we eliminate Bk and Bk+1’ thereby increasing the order of the equation
Apay - Ay — 2.0 (6 — ps) =0. (7)
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We seek the solution of (7) in the form

.’1[.' == /'U‘:‘ro

Substituting Del*K in (7) and canceling DelM(kK*1) it we obtain

P et =2 (e — i)

or
tuy
lqﬂ
20¢
: i
it '
\ 2/ |
" \ /1
\ / !
\ )
N
' %
L.—-——"

n

Fig. 17. Permissible val-
ues of 1/R, obtained from
the requirement that the
phase and fast oscilla-
tions be stable at dif-
ferent values of n. The
801lid curve shows the per-
missible values of 1/R
for simultaneous stablle
ity of both oscillations.
1) Vertical fast oscilla-
tions; 2) radial fast os-
cillations; 3) phase os-
cillations.

wgu=u~p; (8)

From Eq. (8) we obtain two values
of 1, which are of opposite sign. We
shall henceforth assume pu to be positive.
When p = O we get u = kv; when p << 1 we
readily obtain

+ .. (9)
The general solution of (7) assumes
the form

Az L™ o D%eF == 1) cos uki 4=

+ Dysinnk;

(20)

D= (b,—ils,).
The asterisk following a letter denotes
here the complex conjugate. In order not
to have growing terms in the solution,
the following inequality must be satis-
fled

‘cosul=jc—psi< 1.

(11)

Condition (11) imposes certain requirements, which are generally speak-

ing not stringent, on relation ;/ho. Figure 17 shows the dependence of

the limiting values of ;/RO on the magnetic fleld index for the vertl.-

cal and radial motions.

We determine B, from the first equation of (6):
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B.=.AI.0—‘A‘-¢! -Akd; (12)

dom 2=

Thus, the values of Blc differ from Ak by a constant factor, so

that we can write

' B mm Dyrlet™® -l Do d%e=" == ¢, con uk - ¢, 8in uly (13)
The quantities Cys Cp» Dl’ and D2 are not independent. The connection
between them is established with the aid of (‘12).

The constant D, and also D1 and ¢, can be readily expressed in
terms of the initial conditions (the initial deviation and the initial
velocity). Let, for example, the injector be located at the start of
the sectar, and let at the instant t = O the deviation be x = x, and
the velocity k = O.

Then we must put in (2)

o= Ll == Dd - DYd® = (14)
Jo=wady == we (D - D¥) = wzD, (15)
The constant D, as well as D2 and C,, Can be readily obtained from
(12), (14), and (15)

l’"" d* =

N d r - t
D=-t i =il )i (16)

=*i—iiﬁﬁ3m%—muh

Bela i L -

G

The general solution of the equations (I, 27) has the form
o ==(De™ 4 ¢, Cdsinwut, - (e - oL euswal,, (17)
In [32, 38] the solution (17) was interpreted as follows: the
fast oscillations are produced in an accelerator with slotted magnet
with the same frequency xw as in a circular accelerator with radius Ro,
but the oscillation amplitude is modulated with frequency p. No actual
investigation of (17) was made, and all g}tention was focused on the

behavior of the oscillation amplitudes [Egqs. (10) and (13)].
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However, such an analysis has several shortcomings. Indeed, the
"modulation" frequency p turns out to be larger than the frequency of
the oscillations (in the, same units) 2mx/N, so that the concept "modu-
lation" does not apply in Formula (17). In addition, in the investiga-
tion of the motion we are interested, of course, not in the amplitude
of the oscillations but in the maximum deviation .

In the papers cited the authors identify the maximum deviation in
a given sector with the amplitude, although, as will be shown below,
this 1s not true for all azimuths.

For the calculation of the intensity 1n accelerators, the main
problems are collisions with the injector and with the chamber walls.
It i1s therefore necessary to determine the maximum and minimum devia-
tions at the injector azimuth and the azimuths in which the deviations
are maximum and minimum.

As a rule, no such determinations were made, and the ratio of the
méximum to minimum amplitude was introduced instead as a characteristic
of the "imperfection" of the slotted accelerator as compared with the
circular accelerator.

We have obtained a simpler and physically clearer expression for
the free oscillations, with the aid of which we can answer the fore-
going quesfions and present a more complete and clear description of
the motion of particles in an accelerator with slots.

We introduce the dimensionless length

- —
g ==

™

X, (18)

where S 1s the length of the path along the equilibrium orbit. It is
otvious that xwtk = Oy, where o) is the dimensionless length of the
path covered by the particle in the k-th sector. Therefore the devia-
tion in (17) can be regarded as a function of o) and k. The discrete
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variable k 1s connected with the particle revolution number M by the

relation
I-'=.‘V'AI. (19)
Equation (17) can obviously be rewritten in the form
Y =(Dsina+-dD cos3) e i ] Comu F, (3) 008 (NMp - 2 (0)), (20)
where
F.=2'Dsins--dDcoss|;
a==Arg, Drins--dDcosal, (21)

We have written o without the subscript k in Formula (20), since
this formula holds true for any k. With such an expreasiop for the de-
viation Xp? it 1s natural to regard Fc(o) as the oscillation amplitude
at the azimuth o. This amplitude is constant* for a given value br the
azimuth o, for specified initial conditions, and for the chosen injec-
tor position. Thus, by fixing the value of o in the formula for Fc(o),
we obtaln an expression for the maximum deviation at the given loca-
tion in the sector. It 1s obvious that in order to find the extremum
of (20) it is sufficient to seek the extremum of F,.

Substituting in (21) the expressions for D and d from (12) and
(16), we get

e s cos (e —
ﬁ:ﬁunw1+:£2i$&_ﬂ]=
[N

s [e- 2{:}'{)5 FC08 3 — a)]

' ! a .7~ 1 ¢ ?.
== g e {1--2p 7)-—2P‘/.o ;}] v (22)

where g, = enc/N 1s the length of one sector in dimensionless units
(18). As can be seen from (22), F§ consists of two factors, one depend-
ent only on o and the other on the initial conditions (the parameters
of the accelerator with slots are assumed to be specified). Thus, the
curves Fg = Fg(o) on the (o, Ff) plane are identical for all sectors
and are symmetrical relative to the centers of the sectors. For dif-
ferent initial conditions, one curve goes‘’over into another by multip-

lying all ordinates by a constant factor.
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The condition dF,/do = O ylelds “

=i cw=iEE, (3) ¥

where o . and o, are the azimuths, on which F, is maximal and mifit.
mal. Prom (23) 1t roilowa that Fc has a maximum glways at the cente¥
of the sector, while no minimum is produced within the sector, since- .
Onin always lies outslde the sector. Indeed, even in the case of tw
linear spaces, in accordance with (18), the angular dimension of the
sector is in our units o, < . Therefore Omin is either smaller than

zero, or larger than w, although by definition 0 < o < Oy

u , wptfasfii)

| S S o = e cutb—
286 45 47 7 48 @9 n

Fig. 18. Dependence of the fre-
quency of the fast oscillations
in dimensionless units on the
index n in a circular accelera-
tor and in the 10-Bev proton
synchrotron (;/Ro = 2/7): 1)

accelerator with slots; 2) cir-
cular accelerator. A) Frequency.

The maximum and minimum values of Fo coincide with the maximum
and minimum of Ai + Bﬁ obtained previously by the other cumbersome
method, using the concept of "modulation" of the oscillations. In ad-
dition, however, we proved here that the maximum of tq. oscillations
occurs only at the center of the sector, and no minimum is produced in
the sector. Thus, 1t becomes partiéularly clear that the characteris-
tic introduced by Dennison and Berlin, referred to above, has no phys-
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ical meaning.

The dimensionless oscillation frequency is, according to (20),
equal to Nu in lieu of 2mc for the circular accelerator. Figure 18
shows the dependence of 4u on g‘for the parameters of the proton syn-
chrotron of the USSR Academy of Sciences. For comparison, we show also
plots for the frequency 2mk.

The Fc(o) curve for the specified initial conditions limits the
region of the sector in which the oscillations take place, and, as can
be seen from (20), the deviation at the given azimuth o reaches a value
Fc, but nowhere exceeds it. Therefore Fc can be called the envelope of
the particle trajectories for specified initial conditions. The value
of the envelope 1s also important for the calculation of intensity.

We note that the dependence of Fc on o can be regarded as "spatial
modulation" of the amplitude of the oscillations occurring with fre-
quency Muw/2m. This modulation is produced in such a way, that the dis-
tribution of the amplitudes 1s constant in time. By way of illustration
we can point out the analogy between Formula (20) with the equation of
a standing wave, in which the amplitudes are likewise different at dif-
ferent points. In the standing wave, however, the oscillations occur
at all points either in phase or out of phase. In our case, the phase
of the oscillations varies from point to point like in a traveling wave.

So far we have conslidered oscillations of particles in any place
in the magnet sector. Iet us consider now the osclllations of the par-
ticles in the linear section. The deviation of the particle from the
equilibrium orbit in the k-th linear section will be denoted by xgr.
Obviously,

(P =7, (=) + 2, (3,) 2o (24)

Riv '

where xk(°v) and ik(ov) are the deviation and its time defivative at
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the end of the k-th sector, and °pr is the length reckoned in the lin-

ear section from the sector, along the equilibrium orbit, in the dimen-

sionless units (18).. R -

-

Indeed, opr/hx = t,, 1s the time reckoned from the instant that

the particle enters into the k-th linear section. The length of the

linear section in dimensionless units is equal to 2p. We note that‘wﬂu
Formula (24), which we have obtained for an "ideal accelerator '1t£m-.
slots," remains valid under certain assumptions also for a "nonideal
accelerator with slots," 1.e., for an accelerator with a magnetic
field in the linear section (see §4).

Using (17), we obtain

Xit =10, (s 4 e3uy) — €3 (S3up — €)] sin wh 4
F 1D, (s +couy) — ¢, (s35p — ¢)] cos pho ==
= F¥P (3,) cos 1k +  (zup)le (25)

The value of Fpr(opr) 1s obtained with the aid of (15) and (16).

After simple trangformations we obtain

e R et N T 7
'i"'::‘ L (/..—2Ph',:o+(i+2p-;)-;g Y (26)

(o=

It 1s natural to call the function Fpr(opr) the envelope of the
particle trajectory in the linear section. All the statements made
above concerning the envelope inside the circular sector apply, obvi.
ously, also to the function Fpr(apr). The function Fpr(opr) also con-

sists of two factors, one dependent only on ¢ r and the other on the

initial conditions. The dependence on the 1n1i1a1 conditions coincides
here with the dependénce of Fc(c) on the initial conditions (see (22)].
This, incidentally, is obvious from the very outset from Eq. (22), and
was used to oarry out the caloulations. .

The function Fpr(opr) 1s symmetrical with respect to the center
. or ™ p) and has a
minimum at this point. This 1s directly clear from (26). Thus,
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LR o= 13— 20t (1+2p1;);?,§,-.' (27)

On the boundaries of the sectors, the functions [FP*]2 and Fg as
well as thelr derivatives coincide. Indeed, the only difference between
(FPF)2 and FE lies in the fact that the expression f, = 2ps cos o cos(o, -
- 0) is replaced by f, = 2pes + L (apr - 2p). But rl(o) = rl(ov) -

= fz(o) = £.727) = Zpes. Inozidfclen £0.029) = 2070) anad f'afO) -

= f'l(ov)’ where the prime denotes differentiation with respect to ¢
Or Oy |

It follows from these calculations that it is possible to intro-
duce a single envelope, which is continuous (together with its deriva-
tive), for the particle trajectories both in the sector and in the
linear section. Thus, the deviation from the equilibrium orbit for any
case can be written in the form

7= Lo () eos (uk -4 (2)),

where o is the length in dimensionless units (18), reckoned from a cer-

tain point along the equilibrium orbit.

é; The maximum of the function Fgr is lo-
o cated at the center of the sector and is

5

10 equal to

101 . e {1

w = i

o}
10

. ¢ .7’: ; g
: ‘r( 1-+2p T) :1’_,-': _ ‘21‘7~»£',] . (28)

QUGS E50/0777 10n

The minimum of the function Fgr(o) 1s located
Fig. 19. Dependence

of the coefficient a in the center of the linear section and is de-
gﬁe§2°1§§§2e§1§or termined by Formula (27). We note that the

8 TR wtnimm of ne nseton 25(0) des ot oot
tions.

cide with the minimum of the function Fc(o),

which, as shown above, is not realized. The ratio of the maximum of Fc
to the minimum of Fo' 1s independent of the initial conditions and is
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equal to

it [.eu ) 8 + ¢+
u-t-‘h“x / -l pC — p*a (29) .

Unlike the value of the "depth of modulation" r;‘/'_j!_.g;; intid.-
duced by Dennison and Berlin [32], the quantity a has a perfectly de-
fined physical meaning. For the proton synchrotron of the USSR Academy.

of Sclences, a = 1.022 for the radial motion and a = 1.048 for the

vertical motion. The dependence of a on n is shown in Fig. 19 (for
L/° = 4/7). The smallness of a for L/R = 4/7 shows that the spatial
modulation of the oscillation amplitudes is not large.

. Some S larities of Injection in an Accelerator with Slotted
ne

Let us consider the singularities of the injection of particles
in an accelerator with slotted magnet. For this purpose we express the
quantitiles y, and io/xw, which pertain to the start of the sector, by
X4 and ii/xm, which pertain to an arbitrary azimuth at which the in-
jector is located. Putting k = O and kwt), = 04 in (17), we obtain

2o ==L si s, 7, cos s (30)

== o €08 3; — Z,wa 8in 6,
In the calculation of the collisions with the injector, it is necessary
to know the deviation of the particle from the egnilibrium orbit at
the location of the injector. Using (30), we obtain Fs(o) at the asgi-
muth of the inJjector

wpein (2 —3,) + -f“— (s 4 2p cos 54 cos (3, = 35)) '

ll“.(=.-)}'—17+[ - s ] (31)

It is seen from (31) that for a specified deviation of the injector,

Xq2 from the instantaneous orbit and for a specified position of the
inJjector, 945 there exists a certain optimum value of the velocity
xgpt at which the two components 15 the square bracket of (31) canool
each other out. If the particle is emitted from the injector with xi
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= x{P%, then 1t 1s obvious that the amplitude of the oscillations is

minimal at the location of the inJjector and is equal to Xy
The expression for igpt follows directly from (31):

g 74psin (a, = 2a;)
%o @ 4P C0 64 COB (3, — a9) °

Unlike the circular accelerator, igpt does not vanish and is a func-

tion of x; and o,. The velocity ii can be expressed in terms of the
angle y between the direction of emission and the tangent to the equi-

librium orbit at the plate where the injector is located:
T
=i - (32)
We denote the optimum angle by Yopt

7 st (3, = 26,) (33)

Towr = Wi, = I, [ F 2 C0% 6, COS (3, — &5y ©

In this notation, Formula (31) assumes the simple and physically

clear form:
Fi(s) = - 5 (0= Tour)™ (34)

where

£ - 2poos s con (s, —8)

Nildea ¢ (35)

=

If we let the lengths of the linear sections approach zero (p = 0),
then f -~ 1 and 70pt = 0, s0 that we arrive at the ordinary formula for

circular accelerators:
FHE)=vi (36)

Comparing (33) and (34), we conclude that in our case the injec-
tion differs from the injection in circular accelerators in two re-
spects. First, the optimum angle does not vanish and, what is more im-
portant, varies during the injection process, owing to the variation
of Xy Second, the deviation from maximum‘angle leads in our case to a
stronger increase in the vscillation amplitude. This amplitude will be
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the same as in a c¢ircular accelerator, but not with radius Ro, but

with radius ri-ao. PFigure 20 shows the dependence of 7opt on the in-

Jector position. For thé.proton synchrotron of the USSR Academy of )

Sciences, t varies from O to 3', while fi = 1.063 for the radial

motion and f, = 1.042 for the vertical motion.

To calculate the collisions with the chamber walls we must know
the amplitude of the oscillations not only at the injector azimuth_(ai),
but also at arbitrary azimuth (o). Using (22), we write

3) s-b-lncasscos (s, —a)

Y B (37)

75 S+ 2p oS 5icos (3, — &) |

where Fc(oi, o) is the amplitude of the oscillations at azimuth o, when
the ejector 1s located at azimuth oy The value of Fs(oi) is deter-
mined from Formula (34).

Fig. 20. Optimum angle Yopt at Xy = 50 cm
in the 10-Bev proton synchrotron (Ro =
= 28 m, ;/Ro = 2/7) as a function of the

point of inJjection. 1) Linear section;
2) circular sector; 3 Yopt’ min.

So far we have a;sumed that the injector 1s located in the sector.
If it 18 located in the linear section, the formulas will differ some-
what from (34) and (37). lLet us establish the connection between the
values of Xo and io/xu, referred to the start of the sector, with ii'
and ko/xw, referred to the point (o‘pr)1 inside the linear section:
TR e L = 138)

b o~ =z T e Y fae
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Substituting (38) in (26) and (22) and carrying out a series of anal-
ogous calculations, such as séparation of the optimum angle, determina-
tion of fpr‘ etc., we obtain an expression for the amplitude of the

oscillations at any point ¢ ahd at any azimuth o, if the injector 1s

pr
located at the point ( °pr)1‘

i 8-~ 2pc (9,5 = 2p) 3 —
7+ 2p0 8 [ (3,p); — 2# (Inp); [ X -’_/"'P %3 (7 Te )’]

. - 24+ 2pcosacos (s, —c) o f.
[F, (o Gap) )= ¥4 2pe == & [(enp)s — 2P] (%up)s [‘3 +

[Fo ’(“npt °up)lP

+/:,.§£~l-(7—72.':,)’]- (39)
where
' -+2pc L8 “’ul') _2P| (G'JI’)J H
np hlll K
wnp = L% Cun)— P (40)

ot ™ Ty 85 2pc - 8 1(3,p); = 2] (%un):

Comparing Formulas (33), (35), and (37) with Formulas (39) and
(40), we see that we can write the expression for the envelope in gen-

eral form, 1.e., for arbitrary location of the lnjector on the orbit:

o ey 0
F s, ) ;7‘;7 i o (°.-)(7—'To,,,)']» (41)
where
(rrirericnlz =3 for o in the sector
fe)=; e (42)
‘+2"'+‘*‘°-~!"= for o in the linear section,
Sl p
and
oy d I f(3)
‘on?g'f'/;“‘ 43 amy" (l‘3)

In practice, the parameter p << 1, so that the expression for f(o)
and Topt ©80 be simplified

cos (26 — ¢,)

]H-p—-——-;—‘ for ¢ in the sector,
/()=

(42')
[i<-p- +(z—2p:for o in the linear section,
[—ptnlfi=:! ron o in the Bector,
T = . (43')
ont "
l" (2, — 1) for o in the linear section.
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In the calculation of £(c) in the linear section it is necessary
to bear in mind that the third term in (42) is of order p2, whereas we

!

carry out our calculatibn everywhere with accuracy to the rgrat power ‘
of p. We retained this term because its order decreases upon differen-
tiation. ' |

As was shown above, the function f(o) is continuous, together

with its derivative (see also Figs. 20 and 21). Figure 21 shows a plot
of £(o) for vertical (x = J;) and radial (x = 41 - n) oscillations

E

at different values of the index n. It is seen from the figure that
f(o) has a minimum in the middle of the linear section and a maximum
in the middle of the sector.

Formula (43) clarifies the physical meaning of the optimal angle
Yopt' It turns out that if we draw an envelope through the injector,
then 70pt coincides with the direction of the tangent to the envelope.
Physically this 1s obvious from the very definition of the envelope.
Indeed, if the direction of emission of the particle crosses the en-
velope passing through the point of injection, this means that at the
trajectory of the particle there exlists an envelope which passes above
the point of inJjection, which contradicts the definition of the op-
timal angle. This statement can be verified directly by differentiating
(41) with réapect to the length of the trajectory oRo/x.

It is clear from (41) that the amplitude of the oacillations at
the place where the inJjector 1s located (for arvitrary location of the

injector along the orbit), 1s equal to

FeP (i 0y =FP(3) = V,x?-i-i:g-l'(e.)(r—':m)‘-
Thus, in calculating the collisions with the injector, the entire
singularity of the accelerator with slots manifests itself in the ap-
pearance of the quantities Yopt and r(ai), which are functions of the
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Fig. 21. The function f(o) for different values of

n for radial and vertical oscillations. 1) Straight
Tine section; 2) circular sector.

injector position. It is clear from the plot of Fig. 21 that f(oi) has
a minimum at the middle of the linear section. Therefore, in order to
reduce the probab;lity of the particle striking the injector, it is
most convenient to place the latter in the middle of the linear por-
tion. However, as is clear from Formula (41), the coefficient preceding
the square bracket will assume in this case a maximum value. This
means_that this injector position increases the probabllity of colli-
sion with the chamber walls. The .practical cholice of the injector posi-
tion is determined by design considerations and by the convenience

with which the high-energy particles can be admitted into the chamber.
Therefore the length of the linear sectilon should not be very large,

so that f(o) differs little from unity. This is precisely the situation
in the proton synchrotron of the USSR Academy of Sciences.

The envelope method developed above has a wide range of applica-
tion. The properties of the free oscillations, which were derived lLere,
are general properties of solutions of equations with periodic coeffi-
cients. It is known that if the oscillations are described by an equa-
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tion of the type
¢+ g(o)p=0,
where g(o) is the periodic function with period Oy, then, with the ex-
- ception of several oéaes (resonances, edges of the stability regions),

the solution can be written in the form
b()=Robe ™ ¢ (s),

where 9(c) 1s the complex periodic Floquet function and u is the char-
acteristic exponent. We normalize the Floquet functions in such a way
that the Wronskilan of the functions

. Y —
F)=e ™ ¢(c) and ¢*(s)=e “p*(o)

is equal to —21. Then the oscillations of the particles at the azimuth
o éan be written in the form

() =F () oon [Nk --a(3)),
where N is the number of periods of the function g(o) contained in the
entire orbit, and

R -
~e . <. o
¢ A - : -

=T T e T T
The function f(o) is the modulus of the Floquet function
&)= 15 () ¢* (a)
The quantity x in the expression for the amplitude is in this case an

arbitrary number, introduced in the definition of the dimensionless

quantity o.
. P - . .
Tre Zerivatlicrn of +rese formilzs, snid glss whe srnllcaticom of

this method to a strong-focusing accelerator, will be given in Chapter 6.

§h. Calculation of Particle Trajectorlies with Account of a Magnetic
eld In the neay Sectlions

So far we have disregarded the presence of a magnetic‘rield in

the linear section. As shown by estimates, even in the 10 Bev proton
synchrotron, where the ratio of the height of the magnet gap to the
- 96 -
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Fig. 22. Characteristic of mag-
netic field aHz/ay-l/Ho near

the edge of a straight magnet,
as given by model measurements.
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length of the linear sections is small, failure to take into account
the magnetic fleld in the sections would lead to a loss of part of the .
working region of the magnet (~12 cm).

As will be shown below, 1f the penetration of the magnetic field
into the linear sections is taken into account in the design of the -
magnet, it 1s possible to avoid noticeable losses of the working re-
gion of the magnet due to this cause (at least at the instant of in-
Jection).

The magnetic field in the linear sections should be measured with
models. By the time the work was outlined, we had only the results of
measurements on models (solid iron, direct current), carried out at
the Physics Institute of the Academy of Sciences [17, 42] in 1949, and
also the results of measurements made in 1951 and 1952 on the magnetic
field of the protén synchrotron model.* In addition, an approximate
theoretical calculation was made. On the basis of these measurements
it can be concluded that the decrease in the field in the direction of
the y axis in the equilibrium-orbit zone (see Fig. 24) is quite small.
We shall therefore assume in the preaent section aHz/ay = 0, Actually
this condition is not a limitation: aHz/ay influences little the char-
acter of the motion, since on the average'bnz/by-y is considerably
smaller than Ho - Hz. This can be verified by direct calculation of
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the orbit, as was indeed done [22]., Pigure 22 shows a plot of aaz/ay x
x 1/H, in the linear seéction. The abscissas represent the lengths in.
units of magnet airgap. fhus, the magnetic field in the linear section
depends only on the coordinate Xx.

The results of measurements on the proton-synchrotron model have
shown thaf the dependence of the magnetic field on the x coordimate is
different in a so0lid magnet from that in a laminated one. This 1is
caused by the existence of an alr gap between the steel laminations.
Therefore the effect of the edges of the magnet facing the linear por-
tions on the magnetic fleld inside the sector is much stronger. We
shall not use the plot of Fig. 23 for quantitative calculations. Qual-
itatively, the plot of Fig. 23 (obtained with the aid of measurements
on a solid magnet) describes correctly the variation of the field in

the linear section.

-l e e - - - e an

=
Dy

7 Z J

(Y

Fig. 23. Characteristic of mag-
netic field Hz(x)/Ho at the

edge of a straight-line magnet
according to model measure-
ments.

The formulas of the present chapter and of the next chapter were
used successfully to oaloulate the trajesctories and to choose Lie geo-
metrical dimensions of the 180 and 10,000 Mev installations.

To investigate the motion of the particles in the linear section,
we make use of the following procedure.
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The equation of motion (I, 27) in the central plane of the linear
section has the form

&y He .
i_ﬂ?"-"ﬂ'.""

where w = eﬂo/hc is the frequency of revolution in the magnetic fiold
Ho of the circular sectors. Integrating the equation, we obtain
' ¢
yom i (0) —w [ 712 G,
. L)

Changing from the variable t to the variable x in accordance with the

following approximate relation (which is valid with accuracy to within .
2) ‘

y | :
dz =wRdt, (L4)
we obtain
Y@=y O~ [ K0, (45)
[

where the prime denotes differentiation with respect to X.

iy
a7, ,
.ﬁ,~i_l_q1 "

Fig. 24. Diagram illustrating
the notation.

Equation (45) will be used to join the solutions of the type (2)
in two neighboring sectors. The magnetic fileld in the sector, on the
boundary with the linear section, amounts to only 78-84% of the field
inside the sector. Thus, this boundary carnot be used as the line for
joining the solutions of type (2), unless azimuthal asymmetry is intro-
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duced.

let us introduce the concept of effective length of the linear
section ' (¢

L, =1--2iDy, (46)

where 1 is the length of the linear section and D, 1s the height of
the magnet gap. The quantity 2b ranges from 1.5 to 2.5, depending on
the construction of the magnet. Thus, we add to the geometrical length
of the linear section, on each side, a length th. We shall assume
that on the boundary defined by 1er the magnetic fleld differs from Ho
by less than 1-5%.

.Iet us integrate (45) over the effective linear section:

fap

Yol =y O+ ¥ (O — = | dz [ M0 k. (47)
[} [}

We denote the deviation p from equilibrium orbit at the start of
the sector by P(ler)’ and at the end of the orbit by p(0). Let the ef-
fective angle of the sector be v (Fig. 24) and let it differ from n/2

by 6.. Then, obviously (Fig. 25),

0.
: %
Y (loo) == (Lup) c03 = ==¢ (log) — b (log) -

We neglect the second term (60 < 0.02-0.06) and obtain

yha)=p¢(ly)i  ¥(V)=p(0) (48)
With the same degree of accuracy, we get
2() LY
y(©0)= '.+t82=”@+-!9-; .
e s (49)

Ylhy=2Et 5

With the aid of (48) and (49) we rewrite (45) and (47):

SOV,
w{lap) =1 (B ’E";-,,)‘;'L'!‘"l' (50)

Sl) == 6, - Slt, }
where
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Fig. 25. Diagram illustrating the no-
tation: 1) particle trajectory; 2)
instantaneous orbit.
Equation (50) differs from the analogous equation for the "ideal
accelerator" with slotted magnet in the presence of the terms 6 and 1.

We therefore obtain in lieu of Eq. (6)

¢+ e —Bis= A, (51)
B Ae (v 2p0) 5 L (e —2ps) = B,

where

Ly . vl
f==— C€==C030,; s§=sin3,; p=2—“;; 3, ==1uv,

o, is the effectlive length of the sector in the dimensionless units
(18). Thus, we use the same notatlion as in the preceding section, ex-
cept that all the geometrical dimenslions are replaced by effective
ones. Apart from this, Eq. (51) differs from (6) in the presence of
the free terms € and 1.

The general solution of (51) is the sum of the general solution
of the corresponding homogeneous equation [i.e., Eq. (51) without §
and €] and the particular solution of the complete equation. We have
obtained a solution for the homogeneous efuation in the preceding aec;

tion. The particular solution can be readily obtained, since the free
- 101 -



e

terms are constants. With this remark taken into account, we readily

obtain

iz =m— €) -k ¢ (2-}- ) .
dl=c-ppm) 2
6 (=0 2p8) e vy (5 )

(Ll =¢ - ps)

A =

Thus, the motion in the k-th sector will be described by the fol-
lowing equation:

b= (D cos uli =~ daysianli - %) gin wily ~t-

T (Crcospk - C,sin i: - By cos wat,, (53)
The constants Dl, D2, Cl’ and 02 are not, as already shown, independent
but are related by the two equations in (14). The constants C, and D
can be readily determined with the ald of the initial conditions

(54)

LI E R,
D+ P

Cl—f-l.":.,"

The constants C, and D, can be determined from Formula (14)

20 | ]
Vo= (p (S5 — A% = G — B9, (55)
v i ; :na \ s
L==“TE‘['\.I‘_“‘_":‘--A*/\STJPC)—(?HN—B‘)PS}-
If we make the following change of variables:
P =0 =pp— 1" siuwaly — B*® cos wuty, (56)

then Egs. (53), (54), and (55) become similar to Eqs. (15), (16), and
(17), obtained for the "ideal accelerator with slots.” Thus, the pres-
ence of a field in the linear section changes the instantaneous orbit
(and also the equilibrium one), with respect to which we measure the
coordinate p. If p is measured from the new instantaneous orbit, then
all the results of the preceding section remain in force.
The equation of this new orbit can be readily written down:
b= A*sin yT70 - B cos YT 0, (57)

where 8 = wt is the azimuth of the particle, reckoned every time from
the start of the sector (line MN on Fig. 24). Inasmuch as the new orbit

- 102 -



e e N PRI Y e

is not a part o a cirele even In the scector, not all the working re-
gion can be utilized. In order to determine the value Ap* of the unused
working region, we must calculate Ap* = p¥* . — p¥* ., . If we substitute
the numbers for <he acceleratcr of the USSR Acadeny of Sciences, we
obtain 4p* = 12 cm.

One can in general eliminate the losses in the working region due
to the presence of the magnetic field in the linear sections (at least
during the injection period) by choosing in ;uitable manner the angle
subtended by the magnet sectors. Indeed, in order to avoid distortion
of the orbit, we require that

A* = B¥% = 0.

This condition 1s equivalent to the conditions

) ' IW 2 .
n=gte e [ dz [ @ di=0, (58)
9 .
Le ¢

6=, “':'1‘.;‘ ; ,()di=0.

.

Equations (58) can be satisfled in some cases by suitably choos-
ing the angle subtended by the sector:

‘wb
o = | N o e 1 2bD),
gamve- Bl Ly (59)

Ay - 2y, 3 &,

If the magnetic field is symmetrical with respect to the center

of the linear section, then

Lop . Cad L
!

[ da]i@di= | 2,0 le—nai=22 | 11, (de.

] [] 0 0
Introducing the notation

L

Uo=-> | 1,G)¢,
N M

we rewrite (58) in the simpler form

L, i

2 wh oh
6—&0—-7-:—...._=0.
v

7,
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1;--‘—:'1'-74=ps=0. (60)

Thus, in the case of a symmetrical fleld the second equation in
(58) and (60) i1s the consequence of the first. The angle subtended by
the sector 1is

Tt " T e (61)

Thus, for example in the proton synchrotron of the USSR Academy
of Sciences, the sectors must be made to subtend an angle not #/2, but
somewhat less. The exact value of ¥ can be determined only after model
measurements. One must bear in mind, however, that owing to saturation
and to other factors Hsr and 1l,, do not remaln constant, but change
during the course of acceleration. Therefore Eqs. (60) can be satis-
fied only within a certain time interval.

With the aid of (60) we can also simplify Relation (52):

: R , 1
A‘.-:-_E--—.:——' b‘:—'——‘if'—;-. (62)

If Condition (60) 1s satisfied, then Relation (50) coincides with
the analogous equation for the "ideal accelerator with slots,”" and Eq.
(51) coincides with Eq. (6). The only difference lies in the fact that
in place of the geometrical length of the linear section 1t 1s neces-
sary to take the effective length.

If the magnetlc fleld 1s asymmetrical with respect to the center
of the linear sectlon, then in general it 1is impossible to choose an
angle ¥ such that A* and B* vanish simultaneously, and consequently,
that the orbit does not become distorted.
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[Footnotes]

We recall that we are not considering here the attenuation
due to the increase in the magnetic fleld.

Magnetic measurements made on the lO-Bev proton synchrotron

magnet have essentially confirmed our calculations and the
validity of the assumption made later on.

[List of Transliterated Symbols]

np = pr = promezhutok = section

ONT = opt = optimal'nyy = optimal
Hay = nach = nachal'nyy = initial
3) = ef = effektivnyy = effective

CP = sr = srednly = average
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Chapter 3

EFFECT OF DEVIATION OF THE MAGNETIC FIELD FROM
THEORETICAL ON THE MOTION OF THE PARTICLES

51. Introduction

) Certaln deviations from the theoretical magnetic field are always
observed in a real magnet. By theoretical fileld in the magnet sectors
we mean a field independent of the azimuth 6 within the angle v (see
Fig. 24) and uniform in all the sectors. In addition, we assume that
all sectors have the same symmetry plane. In the linear sections, the
theoretical fleld is regarded to be one which cgauses the coefficients
6 and 1 to vanish, in accordance with (II, 60). Another important as-
sumption 1s that all four sectors are similar to one another.

If we realize the theoretical fleld, then the instantaneous orbits
of the particles (1i.e., the orbits about which the fast oscillations
are executed) have inside the sectors the form of a circular arc, lo-
cated symmetrically with respect to the chamber walls. Any deviation
of the magnetlic field from theoretical will lead to a distortion of
the instantaneous particle orbit, which 1s equivalent to the loss of a
cer?ain fraction of the working region of the magnet. This is 1llus-.
trated in Fig. 26. Tﬁe distorted orbit (solid line) deviates from the
theoretical one (dashed line) by iA1/2° In order for the particles not
to strile the chamber walls (or the injector), it is necessary that
thelr maximum osclllation amplitude be smaller by Al/é than the oscil-
lation zrmrll<ucde permissitle Ir :h% theoreslzel mecsneslis fleld. AS
will be shown in detail in Chapter 5, the intensity of the particle
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beam 18 directly connected with the permissible swing of.the oscilla-
tions about the equilibrium orbit. Thus, the shaded area in Fig. 26 is
in fact not used to produce an intense beam of accelerated particles.
The smaller the deviations of tﬁe magnetic field from the theoretical
value, the less distorted the orbit and consequently the larg;r the
intensity of the particle beam for a specified dimension of magnetic
gap. At sufficiently large deviations from tﬁe theoretical field, the
acceleration of the particles becomes impossible at all.

A2Cng Wit Zlgmorslin ol otne: sqpalllitriim ozniolnsctantanssus orbils,
the deviations of the magnetic field from the theoretical can cause in
some cases an increase in the oscillation amplitude. Such an increase
in the amplitude has a resonant character* and can occur for certain
fully defined values of the magnetic fileld index n. Therefore the value
of n in the main part of the working region of the magnet is chosen
such that 1t does not correspond to resonance. The resonance phenomena
will be investigated in detail in the next chapter.

It is clear from the foregoing that a clarification of the influ-
ence of the deviations of the magnetic field from theoretical is one
of the most important problems in accelerator theory. -

In an accelerator with a slotted magnet, the influence of disturb-
ing phenomena on the motion of the particles is much stronger than in
circular accelerators. Moreover, the presence of the linear portions
makes 1t possible for entirely new disturbances to arise (inaccuracy
in the installation of the sectors, shift of the symmetry planes of
the magnetic fleld in the sectors, lnaccuracies in the angular dimen-
slons of the sectors and in the length of the linear sections, differ-
ence between the average fields in different sectors, etc.).

Usually the deviations of the fields' from theoretical are divided
into a statistical part and into an ingtantaneous part, in accord with
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Fig. 26. Distorted orbit. The
shaded region 1s the actually
lost portion of the radial gap
_ of the magnet.
the measurement method used in circular synchrotrons and in betatrons.
We shall not do this, and use the term deviatilon to denote everywhere
the total deviation.

Our investigation [17], carried out in 1949 (together with A.M.
Baldin and V.V. Mikhaylov) is indeed the only one devoted to this ques-
tion. It served as the basis for the design and to the choice of tol-
erances for the 10-Bev proton synchrotron of the USSR Academy of Sci-
ences and for the 180-Mev model.

We shall consider in succession several devlations of the mag-
netic field from theoretical, assuming these deviations to be small
quantities. Obviously, only this case 1s of practical interest. Each
of the inhomogeneities will make 1ts own contribution to the distortion
of the equilibrium orﬁit. In view of the smallness of the deviations,
it 1s natural to assume that the total distortion of the orbit is the
sum of the partial distortions, each considered separately.,

§2. Calculation of the Perturbed Orbit

In the presence of varlous types ol perturbations in circular ac-
celerators, the motion of the particles in the vertical and radial di-
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rections are described by the following differential equation:

£ (1) Iy =g (O), (1)

.
N ¥

where the dot denotes differentiation with respect to the azimuth 6.
The function g(€) is periodic in © with period 2w. The general solution

of (1) can be written in the form

A4
= Asinsd -~ eos O - K-.%-:'.- ‘. glieos (8 —iL=)d:

s ) S cosx (A —i—~mal. (2)
L]

480 =

The function x*(€) has a period 2m and can be regarded as the
equation for the distorted orbit. '

An analogous expression can be obtained also for the accelerator
with slotted magnet, by using the solution of the homogeneous equation,
investigated in detail in Chapter 2, to determine the periodic solu-
tion of the equation with right half.

It is sometimes convenient to introduce the effective angle sub-
tended by the sector, v < m/2, as was done in the preceding chapter.
Then during one revolution the azimuth © increases by 4v < 2w, if it
18 assumed that the azimuth © does not change in the linear portions.

In this case the equation of the distorted orbit has the form

LR 1)

X 6) =g | () cosx(®—i42)dk: (3)

2510 2u
-

We introduce the following notation:
(@) =g(8) g(O=g(-6); gH(E)=g@+0), ete. (4)
1 (O)=y*(0); z7(M=y*(+6), etc.

As in the preceding chapter, we assume that the angle 1s measured from
the start of each sector and varies from O to v.

The equation of the distorted orbit ‘in the sectors 1s sought in
the form
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Xy= A c083(v— 8) — B, cosx0 +-¢*(6) (5)
with supplementary periodicity conditions
drpy=Ay, By =B, (6)
where N is the number of the sector (1 < N < 4).

Fig. 27. Distortions of field and
form of distorted orbit.

Equation (5) with supplementary conditions (6) can be regarded as
the equation for the new distorted orbit. The oscillations of the par-
ticles about the distorted orbit will occur in exactly the same manner
as about the symmetrical orbit. Indeed, if we measure the deviation XN
from the new orbit, we obtain an oscillation equation which coincides
exactly with the homogeneous equations of the preceding chapter.

It 1s easy to ob%ain the equation relating AN and BN with AN+1
and BN+1’ ‘

Bywm i =

Nl T

(7)

. . T
Ay—Bye2p [B_\'s - 7‘——] =dy =B ~1y

.~ . 4

where the notation of the preceding chapter [see (50, 51)] is used for
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N and Ty Unlike the previously considered cases, we assume that the
quantities €y and My do not have the same values in the different lin-
ez> secticns. Ihis, the guantitlss Ey = SNRC/k and N pervain to the
linear section between the N-th‘ and the N + l-st sectors.

We seek the solution of (7) in the form

VIE WARY, I (8)
where DN is an unknown function of number N, satisfying the equation
. o= iMN1)
/'u-i-l_.D.\':_m/.Y; (9)
! - =Tty (¢~ 2.“"") + ',\'+] — ?P ‘e

5 . =% ()
With the aid of (9) we can readily obtain the periodic solution
for Ay, which satisfies simultaneously Relations (6) and (7). For this
purpose 1t 1s necessary to use the periodicity of the function fN' As

a result of the calculations we obtain

A= Jycosut fy b fe o= 1y 4c082s )

~ Soide A BB 2 ! ' ( 10)

s

By=A,,, — —:‘! . ,’

Thus, the problem 1s completely solved.

By way of an example, Filg. 27 shows the distorted orbit for dif-
ferent values AH of the deviation of the average field in the magnet
sectors from the theoretical value. The ordinates represent the devia-
tion of the orbit from the average position in the chamber. The ver-
tical dimension of the direct angles is equal to the change in the
radius of curvature of the particle trajectory in the given sector,
due to the deviation of the magnetic field from the average value.

Figure 28 shows the orbit in the 180-Mev proton synchrotron, cal-
culated in accordance with the derived formulas and the magnetic-meas~
urement data.

§3. Motion of Particles in Vertical Direction

The motion of the particles in the vertical direction should bde
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Fig. 28. Orbit in 180-Mev proton synchro-
tron as obtained by magnetlc-measurement
data. The arrow indicates the linear sec-
tion with magnetic field different from
theoretical. 1) Direction of motion; 2)
sector; 3) injector.

examined with particular care. Indeed, the region accessible for par-
ticle motion in the vertical direction 1s 5-7 times smaller than that
in the radial direction. It 1s usually assumed that the inhomogeneities
arising in the magnetic fleld do not give rise to additional oscilla-
tions in a vertical direction. In fact, however, in an accelerator
with slotted magnet, unless special measures are adopted, additional
vertical osclllations with large amplitude can be produced. Connected
with this phenomenon is a very dangerous resonance between the vertical
osclllations and the revolution frequency, which occurs in the l1l0-Bev
proton synchrotron, unlike in the circular accelerator, at n = 0.84,
which lles within the stabllity regilon.

Owing to the structural features of slotted magnets, the "central
magnetic plane" in such magnets 1s actually not a plane.

The reason for it is, first, that inaccuracles are possible in
the installation of the individual sectors relative to one another, as
a result of which thé "average magnetic planes" of the different sec-
tors may be situated at different levels; second, each sector is made
up of 4& tlocks, so that the "cen¢ral plane" will not be a plane even
within a single sector; third, the geometrical central plane may not
coincide with the central magnetic plane, and the position of the lat- }
ter is influenced by many factors (in particular, the location of the
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magnet windings).
Assume that the equation of the surface on which I-Lr = 0 can be

written in the form

(-]
i - R
s=t— =4z 4 :\_ 5 8in (k0 4-aff) (11)
Kom}
1LV L4,
woere the socsrilnat: D Is m2asursd from the censtril plans, chcsen such

that éx a3,=0. To solve the problem of interest to us we can use the
results of §2, if we assume k = 1/_;)-; X = 2z; gy = ny = 0. Without stop-
ping for the self-evident calculations, we shall consider a few im-
portant cases.

We assume that the central magnetic planes of the sectors are
shifted parallel to one another, and then all the Z) in (11) are equal
to zero. Formulas (3) and (10) are valid in our case if we assume

¢y =Vnaz, (12)
and replace m by ﬁ

Before we write out the theoretical formulas, let us call atten-
tion to the fact that in the case of the vertical motion we have a re-
lation, which has a high degree of accuracy, fully adequate for the
calculations on the 10-Bev proton synchrotron, '

cosn=0,84 —n. (13)

For example, when n = 0.55 Eq. (13) yields for cos p a value 0.29.
Exact calculation leads to 0.298. When n = 0.95, the exact value of
cos u 1s 0.1, while the approximate value 1is 0.09. .

Then, according to (10) and (3),

(2,68 — 20) (23— dzy ) = (d2y 9 — 32y )) .
Ay= (0N —n) (1% —n) . (14)
zy==Agcosu (v —0) -~ Ay cosub - Az,

Along with the coordinate Zys which 1s measured from the central
[}

plane deflned above, we introduce a coordinate z'N, measured from the
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central magnetic plane of the N-th sector. Obviously, z'N -2y~ A’N'
Let us consider three particular cases, shown schematically in
Figo 29: [}

1) Az, =4z =a; 2) Az, ==z =a; 3) a2, = —Az, = 20;

Az, =Az = —a; Az, == Az, =—a,; Az, = Az =a.

fet us calculate the maximum deviation from the central magnetic plane

Zﬂm: 0 5 R e 2a cosz.—-:—
) z-u'—O.S-’A-u ; 2) S = 1.8—n :
S _Glieste—=n(A4c)
3) “uax T Z(Ueh ) (I M—n) " (15)

Fig. 29. Distortions of cen-
tral magnetic plane and form
of section of central plane of
vgrtical osclillations.

As can be seen from (15), in cases 1) and 3) the value of z' ..
exceeds & by many times and becomes infinite when cos p = 0 (4.e.,
when n = 0.84). This is connected with the fact that when cos y = 0

resonance sets in between the vertical osclllations and the perturba-

T womeadta oy 4
- uoab.ov v e e e
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Thus, when the magnetic planes are shifted parallel to one another,
we obtain curvilinear surfaces, the projections of which on the ver-
tical plane are shown in Fig. 29. It is precisely near these surfaces
that the free vertical oscillatione are now executed. We can therefore
call them the effective central "planes." It is clear that owing to
the distortion of the central "planes" we are unable to use part of the

magnet gap, equal to 2z!' For example, i1f the inaccuracy in the in-

max
stallation of the sectors is +3 mm, then we lose 34 mm in the vertical
gap of the magnet when n = 2/3 and 130 mm when n = 0.75.

Let all the AZy be equal to zero, and then we can use Formula (5)
to calculate the coordinates of the effective central "plane," after
making in this formula the following obvious substitutions:

4 ! kzy cos :‘:
y 1\'(,21::_.-,.-. :/coski—cos;A) '
"™ .

Z, = A_\. cos % (v—-O) — A.\'-;-l M5 K9+2-L—‘_2-7 S.h (.".‘v') + a:)_ ( 16)
hzal

We see that the effect of the odd harmonics exceeds that.of the
even ones. The reason for 1t is that for vertical oscillations cos p
is quite close to zero. In other words, in the region of the values of
the index n of interest to us we are close to resonance between the
revolution frequency and the vertical oscillations.

Iet us consider some odd harmonics in Expression (16).

We readily obtain

k1
e ,- Il cos n?:c«:s wfv =l = (=1) ¥ sl a}:'cos +6
A=t LI 2{u,58 — n)

()=
-yﬂn@n+qg]. (17)

In (17) the greatest contribution is made by the first two terms,

whose maximum value 1is '

ko 3 Vite
TR 2O —n) *
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We shall assume that the maximum of (32) occurs at the same values of
aﬂ and 6 as for the first two terms. This is true if cos p << k1/2R.
In this case we obtain ‘)

5 vite
(z..v(o))mnx: v g— ) [1%0'%":‘_"'*'8!]' (18)

where 6, =1 if (k + 1)/2 18 even and §, = 0 1if (k + 1)/2 18 odd.

As 1s seen from (18), the effect of the first harmonic is approx-
imately five times larger in amplitude when n = 2/3, and 8.5 times
larger when n = 0.75. The effect of the third harmonic (when n = 2/3)
is approximately 8 times smaller, and that of the fifth harmonic 15
times smaller than the effect of the first harmonic. The effect of the
second harmonic is 25-30 times smaller than the effect of the first
harmonic.

§4. Conclusion

In the preceding sections we investigated in detail the motion of
particles under the action of various disturbing phenomena. We have
shown that if we disregard resonance effects, then the action of any
kind of perturbation reduces to a distortion of the equilibrium orbit
or the surface about which the oscillations are executed, and does not
affect the character and magnitude of these oscillations.

The forms of orbit distortion have a relative stability, since
the disturbing phenomena are in themselves relatively stable. During
the acceleration process, the form of the orbit changes very slowly.
In the 10-Bev proton synchrotron there will be two periods during which
the form of the distorted orbit changes apparently at a relatively
larger speed. The first is the initilal period of acceleration, as the
magnetic field increases from 150 to 1000 oersted. The remanent rmeg-
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ence the form of the orbit at 1000 ocersteds. Second, at the very end
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of acceleration, starting with a field of 11,500-12,000 ocersteds, the
saturation phenomena increase sharply and influence the form of the
orbit. Of course, the most important is the form of the orbit at the
start of the accgleration. ‘

If the orbit were to be inown beforehand, suitable changes in the
construction of the chamber and of the magnet could help avoid losses
in the working region of the magnet, similar to the account of the de-
viation of our orbit from circular due to th; presence of the linear
seations. Thus, The Lo0sses In ths employed porilon of the worxking re-
glion are due to the fact that the magnet and the chamber are designed
for an orbit consisting of four arcs Jjolned by straight lines, whereas
the actual orbit assumes a different complicated form.

On the basis of the foregolng formulas 1t becomes possible to do
the following: 1) calculate the form of the particle trajectory for
any distortions; 2) estimate beforehand the orbit distortion brought
about by some particular deviation of the field from theoretical; 3)
ascertain what types of distortion are the most dangerous; 4) choose
methods for mutual cancellation of the distortions; 5) choose (with
account of the results of Chapter 4) the value of the magnetic field
index n in the main part of the working regioh of the magnet; 6) de-
termine the required accuracy of the magnetic measurements; 7) deter-
mine the required accuracy of manufacture and erection of the magnet
(angular dimensions of the sectors, lengths of the linear sections,
etc.); 8) choose (with account of the results of Chapter 5) the dimen-

slons of the magnet cross section.
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1]
Resonant phenomena may also not be connected with deviations
of the magnetic field from theoretical, but, as will be

shown in the next chapter, such resonances in annular mag-
nets with weak focusing hardly play any role.
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Chapter 4

RESONANT PHENOMENA IN ACCELERATOR
WITH SLOTTED MAGNET

§1. Introduction
The various possible resonant phenomena in accelerators should be

the subject of a speclal analysis. In the first three chapters we have
investigated in detail the i.ee and radial-phase oaciliations. All the
calculations were made in the linear approximation. Usually such an
analysis 1s satisfactory, and inclusion of the second and higher ap-
proximations is of no practical use. This holds true, however, only
away from resonance between the different modes of oscillation. Reso-
nant phenomena between the fast oscillations in circular accelerators
were considered in many papers (see, for example, [U43-45, 56, 57]).
Resonant phenomena 1in an accelerator with slots were first inves-
tigated in detail by the author [25, 27]. As will be shown below, the
resonant phenomena in accelerators with slotted magnet differ essen-
tially from resonant phenomena in a cyclic accelerator. This difference
manifests itself primarily in the fact that several resonant values of
the magnetic field index n are strongly changed even when the lengths
of the linear sections are small.* This 1is particularly significant
when the resonant shift of the index 1s from the region of values of n
lying outside the working region of the magnet to the inside of this
region. This 18 clear from the fact that the frequency of the free os-
cillations in accelerators with slotted magnets (as can be seen from
Fig. 18) changes and this causes a change in the index n at which reso-
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nance with the revolution frequency sets in. The resonant value of n
hardly shifts at all in the case of nonlinear resonance between free
oscillations, for so long &s p = 1c/2R is small, the frequencies of
the vertical and radial oscillations in accelerators with slots vary
in proportion to each other. Therefore the well-known resonance ocour;
ring at n = 0.2 between the vertical and radial oscillations occurs in
an accelerator with a slotted magnet at practically the same value 6:
the magnetic field index n. Another distinguishing feature is that 1@
an accelerator with slotted magnet tﬁere occur, in addition to the or-
dinary resonances, also multiple resonances, i.e., resonances with the
external force having a frequency not equal to the natural oscillation
frequency, but to a multiple of this frequency, i.e., larger or smaller
by an integral number of times. The theory of such resonances was
first developed in general form in the classical paper of Mandel'!'shtam
and Papaleksi [49]. The reason.for the occurrence of multiple reso-
nances lies in the anharmonicity of the fundamental oscilllatory procesa.

Unlike the synchrocyclotron, the microtron, and annular accelera-
tors, the principal role is played by the magnetic field in the region
where n > 0.2 ~ 0.3. According to the technical specifications, 0.55 <
< n<0.75 in the main part of the working region. It is therefore
meaningless to consider the well-known resonance at n = 0.2, and also
the resonance at n = 0.25 (the value of n 1s given for the circular
accelerator), etc. In annular accelerators with slots the principal
role 1s assumed by résonances between the radial oscillations and the
revolution frequency, brought about by the presence of deviations of
the magnetic field from the theoretical, and resonances between the
vertical oscillations and the revolution frequency, brought about by
the distortion of the central magnétic plane (Fig. 30).

In addition to resonances with the free oscillations, resonances
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Fig. 30. Resonant values of n as a

function of 1/R for vertical (1) and

radial (2) oscillations.
with the phase oscillations can occur in the accelerator. This ques-
tion was raised for the first time in the summer of 1950 in a discus-
sion of the power supply for the magnets of the 180-Mev and 10,000-Mev
proton synchrotrons, held at the Scientific Research Institute for
Electrophysical Apparatus of the Ministry of Electric Industry, USSR.
It turned out that the magnetic field will contain small harmonic com-
ponents with frequenciles lying in the range of variation of the phase-
oscillation frequency. Calculations which we made at that time indi-
cated that in spite of the exceedingly small amplitude of these har-
monics (~0.02 gauss), this phenomenon may prove dangerous in some ocases.
In addition, we called attention to the danger of exceedingly small
oscillations in the frequency and amplitude of the accelerating elec-
tric field.

§2. Generalization of the Averaging Method A

In solving ordinary differential equations with slowly varying
coefficlents or with small nonlinearities, and also in the investiga-
tion of the passage of a system through resonance, the "method of av-
eraging," which was established on a so0lid mathematical foundation in
the papers of N.N. Bogolyubov (33], plays' an important role. This
method 1is pa?ticularly convenient if we are interested in first.
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approximation calculations, as is usually the case. From the mathemat-
ical point of view the changeover from the circular accelerator to an
a.ccelera.t.ow with slotted,magnet denotes the changeover from differen-
tial equations to difference equations or from equations with constant
coefficients to an equation with periodic coefficients. This averaging
method can also be generalized to include the present case.

The motion of the particles in the circular sector can be de-
scribed by Eq. (III, 1). It is possible to change over from the second-
order differential equation (III, 1) to two first-order equations in
the two variables A(6) and B(68), using the following transformation

[ 1]
== AWsi. 5 () cos [t
' v

(1)

4 .
7= [A (‘J)L‘D.‘LI wdt — B (V) sin J UN
L}

u

where the angle 6 varies from O to v. Subatituting (1) in (III, 1), we
obtain differential equations for A and B:
A(U)-_:qic.,s;_§§.1(u)_-.,_fl';|,|(o)cos2a-1:(u)sin2=1; (2)

By=— £ sina— L 11 () - 5= 1A (§) sin 22 + 4 (1) cos 2a),

where ¢=fa¢0 and X = -J H°Hr.2. Were thq angle 6 to vary without limit,
then, on ;.yeraging the equations in (2), we would find that the terms
in the square brackets vanish. For example, if g = O, we obtain di-
rectly the known law governing the variation of the amplitude of free
oscillations in a circular accelerator. Indeed, in this case A(9) ~
~ f; = 4/-1-1— . For axi ‘accelerator with slots, such an averaging ylelds
nothing, since 6 verles within & ll-lted range. It ls obvious, however,
that in this oase, too, the expression in the square bdrackets in (2)
should play no role.

We mark the quantities A, B, )‘(, and « with the index k, which in.
Aicates the number of the sector. In addition, we introduce
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llk(O)u.'(0)=g/"!; A (0)= A4 A (=4, ‘3)
I, (v) % (W= y,; B, (0)sm BY; B, (v)== B,
and "join" the solutions in two neighboring sectors with the aid of

Relation (1):
W (Ae — Bya) = AL s ( u)
Ap B4 2p (A,o-f Bymiy, .

v v
€ =z Co8 I wll); = sin [ xdl);
) [ ]

(5)

e,

P=gpr-

The first equation in (4) expresses the equality of the ra?ial or
vertical components of the particle mom'entum at the end of the k-th
and the beginning of the k + l-st sectors._The radial or vertical mo-
mentum is in our case equal to Hi, apart from constants, so that the
right and left halves of (4) contain the value of the magnetic field
at the instant when the particle leaves the k-th sector and at the in-
stant when the particle enters the k + l-st sector.

Equations (4) and (2) are the exact equations of the investigated
problem, and should be solved simultaneously. However, the systems (4)
and (2) can actually be solved if we assume that the variations of
A(8); B(6); x(6); H(@), etc. are slow compared with the variation of
the angle 6. lLet us integrate in this approximation the equation (2)
with respect to 6 from O to v. In integrating between these limits, we
can assume that A and B, which are contained in the right half of (2),
do not depend on 6 within the confines of a single sector. As a result

we obtailn _
[
A — Ao =.[€5-‘,-}.Qcos adh—in A, —h, [A,,“ s — BH_,:'];
[}

F 8y (O
By —B, = —-Ii;‘.—- sinadh— 1.8, 0 [Ay 8 + B.ﬁoc]‘ (6)
0 .
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where
v v & In{Hx)
h=gm=1—a - (7)

’ ¢
Substitution of (6) in (4) ylelds the first difference equation of the -
problem under consideration:

“
P . ah
A.c—.- B.‘--—y':i {(1 e Il‘,) T + -——%k I.A'_Hﬂ—B..”‘I —

-—J:"; ) COS T d‘:} R . (8)
H

An (e +2p€) + Bs (¢ — 2p8) = (1 4= 1) Brgs — 2t [Aryus+ Bapa€] +

FRea )
{-J === xinadl,

W

* In order to be able to apply the averaging method to (8), we must

} separate in Ak and Bk the rapidly oscillating part, similar to what 1is
% done for Adifferential equations. Therefore in place of the actual vari-
! ables Ak and Bk’ we introduce the complex variable Dk’ which turns

into a constant when f‘k = 0 and g, = O:

Ay =D '™ D™, (9)
B,=d, D™ 4-d}Dje™%,

dy= -—p — i 200y | (10)
'] .

R =t

¥, = 2w cosng, =c— ps.

- =

It 1is easy to verify that 1if Dk and dk are regarded as constant,
then (9) is a solution of the corresponding homogeneous equation (8)

when the parameters are constant. According to (9), we obtain
‘AM =/t Al et LeL G ) (11)
Dy = Dydie™Sen 2 (200, < Iy Ad) ™ o= c.C.
Substituting (11) in (8), we obtain two linear equations with respect
to the two unlkmowns AD and AD*:

¥ = Y N L 0.
ADge™ 1 - AD T = (e T ke ) = = | 7L cosdl;
kel Y
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S (] o =iy . Y . ! ' i HR
dADe ™ - d A DN = (e Mo o) o [ TRl cosedt, (12)

where '!1 and !’2 are slowly varying funotions of the number k. In the

solution of (12) we encounter terms of the form

Wie™sEm; W3V, eto.
Upon averaging they yleld zero, and consequently the average solution
(12) has the form '

: ier
O ~O+ 7
Al) _"'__T_—_i! *
where
. g0 . [ ,
‘l ldl‘ - 2=-—- r_‘ﬁ; l).-'-

2% [y B ma) pan(1— 2,
. d‘ - dﬁ (l - h‘.) % . [ 1ot yz+‘ '

(14)
I.-_—'c-":"‘l [(gh__siuz-%-—i’r— d;g‘,*,cosz)d’i. (15)
° Y4y

If we regard ad, and ak as small quantities, the squares and prod-
ucts of which can be neglected, then Eq. (13) assumes the following

final form:
: iddye
')hx (1 Iy~ 2'“”‘.” ’_
! 1 ips ) YR
RPN TP
) .l 2 .1 sifag Vig ! 2isinp,,, (16)

Equation (16) is fundamental to our theory. Its derivation is
somewhat cumbersome because we are taking into account the changes in
the system parameters, with an aim toward obtaining later the law gov-
erning the variation of the amplitude of the free oscilllations in an
accelerator with a slotted magnet. In the investigation of the passage
through resonance, one can generally speaking disregard the variations
of the parameters, since the resonance plﬁys usually an important role
for a short time interval. In this case Eq. (16) simplifies to
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Equations (16) and (17) are a generalization of the abbreviated =
. .
equations of averaging theory to include the case of Adifference equa-

tions.

(17)

§3. Adiabatic Variation of the Amplitude of Free Oscillations

In order to solve Eq. (16) it is first necessary to solve the cor-

responding homogeneous equation. A solution of this last problem is
simultaneously equivalent to a determination of the adiabatic varia-

|S1x4) -
9.

L]
iy

-y

g+0

¢ 4 g2 43 4o Y5 45 47 48 499 10 x

Fig. 31. Dependence of the
function f(:ce) on ¢ for three
values of § ani for the rsradm-
eters of the proton synchro-
tron of the USSR Academy of

Sciences (1/R = 2/7).

tion of the amplitude of the oscillations in accelerators with slotted
magnets. Solving (16), we obtain in first approximation (in ﬂk and

84,),
,.,u,=_,\’*u,,‘-_( -]+

“=1 ¥Yxo1

(T3

+Julup,+,lAd~_P< #—)]}i—lu h,

Replacing summation by integration, we obtain
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]

Dy=D )" ) (19)"

The square of the oscillation amplitude at the azimuth ¢ is determined
from Pormula (II, 22): |

Fr 3000 [ el WD i), (20)

¢ = TR i wit

where f(o) is defined in (II, 42). It is seen‘from Formula (20) that
if « is constant, then the law governing the variation of the ampli-
tudes of the free oscillations in an accelerator with slotted magnet
coincides with the law governing the variation in a cirecular accelera-
tor. However, if x changes, as 1s usually the case on going through
resonance, then certain singularitles appear, present only in an ac-
celerator with slotted magnet: first, the change in the oscillation
amplitude is different in different azimuths; second, the rate of at-
tenuation itself changes.

(x5d)

o

l

§s

0 W a2 49 g4 47 G5 Q7 98 49 10 %

Fig. 32. Dependence of: the
function f£(x6@) on x for three
values of 6 and for 1/R = 1.
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Pigures 31 and 32 show the function £(g) for three different asi-
muths: 6 = O (edge of the sector), 6 = n/4 (middle of the sector), and
0 = n/8 (mtemdnﬁ points), and for two values of I/R, namely 8/7
(the proton synchrotron of the USSR Academy of Soiences) and 4. We see
from these figures that when < increases the amplitude at the contgg
attenuates more slowly, S.nd on the edge it attenuates more rapidly, E
than in a circular accelerator.

From Formula (19) we can determine the change in the phase of the
oscillations due to changes in the parameter « a.nd' in H. We assume
that ¢ = const. Then

L x,
Dy, (1) — _'_’_x_‘)‘-c' T Tl
”" (/I,) ( [/ ¢

Thus, the change in the phase of the oscillations is logarithmic,
i.e., rather slow. For example, in the proton synchrotron of the USSR
Academy of Sciences, the phase of the oscillations changes by approxi-
mately 30° during the entire acceleration time.

§4. Resonance when n = 0.84

In the 10-Bev proton synchrotron when n = 0.84 the frequency of
revolution and the frequency of the vertical oscillations coincide and
cos p = O. The value of cos p in the vicinity of n = 0.84 can be found
from Formula (III, 32). The value of the index n, at which resonance
takes place, can be calculated from the following approximate formula,
which usually gives an accurate result:

n=— 204 G =240 4. ., (21)

where b = 1/7R. Formula (21) is a solution of the equation

=va  IvVn
COBmspom =, 5 s

lli.l,/iﬂuo
which is expanded in powers of b.
The magnetic field index n in the main part of the chamber 1s, of

course, chosen to be much smaller than 0.84 and on the average its
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value is 0.66. According to the tcchnical specification, at the in-
stant of injection from a working region measuring 160 cm, n lies in
approximately 140 cm between 0.55 and 0.75. It is desirable, however,
to use the entire working regioﬁ of the magnetic field, up ton = 1.
In addition to the trivial desire for making full use of the ﬁngnot
gap, this 1s connected with two other factors: first, when n ~ 1 the
orbit 1s compressed more rapidly, which can increase the injection ef-
ficiency; seconc, when the particle beam is e;tracted from the accel-
erator chamber, it is necessary to use the region n ~ 1, in order to
increase the pitch of the unwinding spiral along which the particile
moves. It i1s therefore important that we be able to caléulaté the
single or multiple passage of the particles through the resonant re-
gion.

The resonance at n = 0.84 will occur if a vertical force acts
with the period of particle revolution. Such a force, in particular,
is the distortion of the central magnetic plane of the magnet, con-
sidered in §3 of the preceding chapter. Such a force 1s also the ver-
tical component of the electric field of the injection plates (injec-
tor). In short, any local constant force having a vertical compoﬂent
due to the rotation of the particle, acts on the particle with the
period of revolution. When n = 0.84 there 1s also parametric resonance
in the case when the index n depends on the azimuth. The principal
role will then Se played by the second harmonic of the variation of n.

Let us investigate first the resonance phenomenon in the case of
a parallel shift of the magnetic planes of the individual sectors.
This corresponds to the firast case considered in §3 of the preceding
chapter which, apparently, corresponds most accurately to the actual
sltuation in the proton synchrotron of thd USSR Academy of Sciences.

After substituting (III, 12) into (15), we obtain
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= oAz, [(1—¢) +dgs); (22)
6= Azx,

We average Ik in the following fashion:

. " L]
=4S =T kY =t (k+1)
Iy =A%, l * ]‘ (

®
_ (Azme-c-,-(t-o-x)) (1 — e*rer)

1— cm"') =

The quantity w=—| %, -ZFik+1)] changes little during the course of
the resonance, and upon averaging it can be regarded constant, Jjust
11ke p,,,. The quantity (Azk+1e‘1"/2(k+l)) i1s a periodic function of k
with period 4. It is therefore sufficlent to average it over one period,

changing k from O to 3. As a result we obtain
Tor =-—u‘h(g :-."“‘hl)l(u,;A;a)_i(Az,—Az.)!. (23)

Iet us use Eq. (17), i.e., let us disregard the change in the os-
cillation amplitude due to the change in the parameters during the
time of passage through resonance. In this case

N I8P
Dy=Dy+ Y iy (24)
[]

We replace the summation in (24) by integration and take the re-
sultant integral by the method of steepest descent at the point of ex-
act resonance. As a result we obtain the value of Dk after passage
through resonance in the form:

D= Dy + U500 )/ B s ag) bias—sa)) e (25)

It 1s clear from (25) that the addition to-D0 has a maximum when
Azk-Azk+2 < 0, 1.e., i1f the alternation of the signs of the shifts of
the central planes occurs every other sector. Here (and henceforth) we
shall czlsulate tre regultant smrllsulde ohtalnss sfter passage through
resonance. Of course, 1t is easy to calculate with the aid of the

Fresnel integrals the entire process whereby the oscillation amplitude
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builds up (see Figs. 33 and 34). The value of the square of the ampli-
tude DkD*k depends essentially on the relation between the phases of
the initial and final oscillations. If we average over all the phases,

we ohtain
DD = DD} + v [(45,— 88 +(35,— 82,
(26)
where
p’=£=('+ﬂc+%')"—6%fé"' (27)

p'z-'{%l (1 + %)-

An is the change in n during one complete revolution of the particle.
According to (II, 22), the amplitude of the oscillations F§ is

Fi oD, D; [ 1 2cosccosle, = o),

Let us consider one example. lLet
A3, = Ay, == —a; 82,=43, =a,
If An = 0.0l1, then the amplitude of the vertical oscillations Fc ex-
ceeds a by almost 60 times.

In conclusion we note that in order to calculate the passage
through resonance during the instant of inJjection it is not essential
to replace the sums by integrals, since a numerical calculation by
means of Formula (24) does not entail great difficulty. Indeed, the
number of revolutions during which the resonance is significant is on
the order of 15-25. Figures 33 and 34 show a comparison of numerical
calculation with the method of steepest descent.

Iet us consider further the resonance phenomenon for a random de-
viation of the central magnetic plane from the geometrical plane. lLet
gl(e)/k; 32(9)/x; g3(9)/x, and g,(6)/c be the deviations of the cen-
tral magnetic plane in the first, second, etc. sectors of the magnet.
We expand this deviation, as in §3 of the bpreceding chapter, in a
Fourier series [see (III, 11)], and investigate the effect of the Jj-th
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Fig. 33. Comparison of numeri-
cal calculations with the cal-
culation by the method of
steepest descent: 1) numerical
calculation; 2) calculation by
the method of steepest descent.
A) Number of particle revolu-
tions; B) scale for.

harmonic:
(/%) 8 — g—ify—is;, i)

gain(fo-asp)= ¥ % . (28)

In calculating I:f by Formula (15) we must average the following quan-

tities:
1) e prtiag gy , (29)
2) ,-‘3&1-1-‘-;.:4-:. (30)
where .
% a1 =204 5 j(k+1),
r=? -
=il —2] 1
Em_.[,(kﬁ-u-f-;j( 2}J. (31)

Let us consider first the exponent in (29). According to (31), we

obtain

k4t

Se-9l  e.

i[(k+1)(—;+-;/)+’aj.»-—
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The last two terms in (32) are almost constant (since Hye = n/2) and
the first term can, generally speaking, vary rapidly. In this case,
the value of (29) vanishes on averaging. However, if (-m/2 + m}/2) is
equal to zero or is a multiple of 2w, then the average value of (29)
will be different from zero. This latter case occurs when

J=uq+l)

'here q = o’ 1’ 2, 3’ u, etc-
An analogous analysis of Expression (30) leads to the conclusion

that it does not vanish on averaging if
J=1lta-1,
where q = 1, 2, 3, 4, etc.

Thus, 1n ocur case all the odd harmonics of the shift of the mag-
netic plane resonate. We have carried out'the derivation for an accel-
erator with four linear sections. Obviously, if we have not four but M
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sections, the following numbered harmonics will resonate:
J=Mq=+ 1. (33)

For example, in a circular accelerator only the first hatmonic reso-
nates, while in an accelerator with four linear sections all odd har-
monics resonate, and in an accelerator with six linear sections the
resonating harmonics are numbers 1, 5, 7, 11, 13, ete. This phenomenon
i1s very simple to explain. The eigenfunctions of the oscillation equa-
tions are harmonic, and when the eigenfunction of the lowest period is
expanded in a Fourier series, we obtain harmonic components of the in-
dicated period.

Thus, we should consider the action of all the odd harmonies. It
must be borne in mind here that if J is contained in the exponent (28)
with a plus sign, we consider the harmonics numbered 1, 5, 9, 13, 17,
etc., while if J has a minus sign, we consider the harmonics numbered
3, 7, 11, 15, 19, etc. It is therefore sufficlent to consider only one

of the expressions contained in (28):

£l = 20"

iaj0tbx)
xZe ( J_:.. .. [ e/t (siuu‘:-}- d;} cos ) db; (3“)

7:’ = 2i

"
[

¥ L
D, ==D.+2-'TI a;{-;{;—dk; " =-—I (p——.;) dk.
u R

We replace the summation in (34) by integration, since the inte-
grand changes very little after a change by unity. Carrying out the
calculations indicated in (34), we obtain

) 3
Dy== D+ 12#%™° [ goagh,
v="Dy+ o J (38)
5,
Ie‘%dk = ,%‘r e,

where *0 is the phase of wk at the resonance point.
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If all the harmonics are present, we should sum their action. As

a result we ottain

' > + 4 R =
- P'-D.‘_%mﬂ:u.y T A Wi, (36)

It is easy to caloulate the sum contained in (36). Indeed
§%—_|_—H+‘ /s (gt TTSR S
= =
+ .
=g [ — e —i(g— g sin0+EED o jan.  (37)
] -

Inasmuch as (1 + ¢)/s is equal to the value of a*,  at resonance [see
(10)], we can regard [sin x6 + a*, cos x0] as the aolufion of the com-
plex-conjugate homogeneous difference equation for the resonant x. In
spite of the apparent simplicity of the right half of (37) compared
with the left half, it 1s more convenient to use the left half, for.
there are ready-made methods for expansion in a Fourier series (tem-
plates, analyzers, etc.), and the series converges rapidly. For the
same reasons, for example, one does not use in practice the "simple"
expression (III, 2) for the distorted orbit in the central plane, it
being preferable to expand (III, 2) in a Fourier series.

We note that the right half of (37) can of course be obtained also
directly (without resorting to the Fourier series) in the calculation
of'Iaf by means of Formula (15), as we did in the derivation of Formula
(23). For this purpose it is necessary to use the following relation,
obtained in analogy with (23):

P ‘“.

e = 7 16— 00— (8 — )
In the cases of practical interest, the series (36) converges well and
usually its first term exceeds appreciably all the others.
Expression (36) can be simplified by assuming 1/R to be a small
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D.-D.—-"“T:%%:i{(t—%b)z,.«....}.
+b§ﬂ%¥-‘n z"”l‘,“.",‘g’-ﬂ.l;: bﬂa‘}-. (38)

It 18 seen from (37) that the action of the first harmonic 1is
(1 - 3v/2)/(3b/4) » 12.5 times stronger than that of the third harmonto,
and 22.5 times stronger than that of the fifth harmonic, etc.

As is seen from (38), the magnitude of the resonance is greatly .
influenced by the value of An. Apparently it will be on the order of
0.01-0,02.

So far we have carried out the calculations using the simplified
equation (17) in place of Eq. (16). It is easy to get rid of this lim-
itation. The solution of the homogeneous equation (16) is given in §3.
Applying to this solution the method of varying the constant, we easily
obtain the desired solution. let Fk be the solution of the homogeneous
equation [see (19)], then

¥ slce
Dy= F'.E‘-:m' (39)
In suming (39) we use the method of steepest descent. Consequently,
D. =—". N D‘p | (uO)

where Fk0+1 is the value of Fk at the saddle point ko, while D'k is
the solution obtained above. In other words, past the saddle point,
the amplitude Dk vardies in accordance with the usual rules considered
above in §3. Parametric resonance at n = 0.84 can be analyzed by the
method developed in the next section.
. Parametrlic Resonance at n = 0.79 _
When n = 0,79, a well-known resonance betﬁeen the first harmonic

of the azimuthal asymmetry and the radial oscillations is produced ih
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the proton synchrotron of the USSR Academy of Sciences. In this reso-
rance, the frequency of the radial oscillations (8) is equal to half
the revolution frequency 2w, 1i.e.,

P-;-; m*ﬂ:—--‘—f—.—ﬂn*m -!!2-.;
A 0,78 40,50 0,088 4 §, 78— ... ; (41)
b'j( .
”n,

The effect of this resonance is proporti:ona.l to the product of
the small deviations from the theoretical field and from the equilibe -
riun orbit. This resonance is therefore referred to as a second-order
resonance. '

Assume that the vertical components of the magnetic field can be
represented in the following form [see (III, 14)]:

| H, (¢, W)= 1y ()[4 (7, OO,

where Ho does not depend on the azimuth & and on the number of the sec-
tor k, while h (r, 6) is amall and yields zero when averaged over k
and 6: (. %) =0 . We then must write in lieu of (III, 1)

S (H@) - (1 — 1, () p = — I (R, N

M= )=, (1 k) — B — 2=, me (0. (42)

The customarily employed quantity nk(e) is small compared with the con-
stant quantity ng.

The influence of the term —Hohk(R, @) on the motion of the par-
ticles was already investigated in the preceding section. '

The term —nk(o)p usually does not play an essential role. But if
n = 0,79, then this term, which is small in magnitude, resonates in
the 10-Bev proton synchrotron with the frequency of the radial oscilla-
tions and in some cases may cause a noticeable increase or decrease in
the osclllation amplitude.

let us expand nk(a) in a Fourier series
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Q.(“)={' ,E op'(Aretn). (43).

The sign in front of the.phase a, is plus if ] is positive and mims )
Af ] is negative. We use Eq. (17). It contains the quantity Iy [see
Formula (15)]:

A ” '

ig-=£5~.\£....,(o);.muo-pd.mmwo +

+ fiﬂc-"!m .f., +1(0) (sin xb 4 d; con vyt “-=

=(i#Dyy,F 40;, ) Lol (4h)
where n,(6) 1s the value of n'(8) — n, in the k-th sector, and k =
-4/37:7;8 (we recall that 6 changes from O to n/2). In averaging (44)
we shall assume that ¢==—2 Y.+ 3(*+1) 18 a slow function of k. Bqua-
tion (17) assumes the form:

D,,\(1—i¥)— D, =¥, Dy e, (45)
The values of ¥; and ¥, are readily determined from (44):

V= — aI:(n. + g ny ) i dycos o P db; (6)

V= m-;—;;![(u, — #g) — i (ny— n )| (nine w3~ ol 7 cos xb)¥ dl,

where n), n,, ng, and n, is the value of ;x(a) in the first, second,
etc. sectors. From the expansion (43) we readily obtain

-\
(n+ "|+"a+ﬂo)—’l;‘:"“d°°'(4ln+“u) (u,r)

.- )
(1, —"g) — i (ng— n) =2 ,;.. 0,y @IV ),

Thus, the quantity ¥, is connected with the odd harmonics of n,(6),
while the quantity !1 depends on the values of the harmonios that are
muitiples of four, .

let us first investigate the effect of the oscillations of the 4 )
term ¥, on the amplitude. We note that its action is not connected with
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the existence of the resonance under consideration, and does not de-
pend directly on n,. Calculation by means of Pormulas (46) and (47)
yields (when 8, = 0) |

"- ;Not;%' | | (us)
In this case the solution (45) is equal to
r
o war . -
D.=D“‘. . . (ug)

Inasmuch as ‘!1 is a real quantity, the amplitude of Dk remains con-
stant. The phase of Dk changes monotonically. Thus, !1 can be regarded
as a correction to the frequency of the free oscillatidns, brought
about by the azimuthal variation of the magnetic field index.

Substituting (47) in (46), let us calculate Y, for the resonant
value n,. The derivations will be carried out for all the terms, ex-
cept the one corresponding to the first harmonic, with accuracy to pa.
The influence of the first harmonic will be determined accurate to p.
After cumbersome but straightforward calculations we obtain

< a wt"'/ dod -
w'=pgwﬁ:%[1_ﬂ’_‘__i+iz—’—;—‘—p]. (50)

As indicated in the preceding chapter, an appreciable fraction of
the azimuthal asymmetry is brought about by the difference between the
levels of the magnetic fleld in the sectors of the magnet. Using the
notation introduced there (see Fig. 27) we write, in accord with (42)
and (47):

Ry (0)= (Ry— 2) by = (ny — 2) Q)11 ;

— (c?—4a?) (s po) .
Vi =(n—2) [%u s 4: linﬂg; ] A”‘" (51)

v,=4 ;‘(‘:__ =2 (1 — p (1— mu)— p] (A =&yl — i (A, — A D).
]

Let us proceed to a study of the resonance and let us put !1 =0,
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We shall henceforth be interested principally in the change of
the amplitude of the free oscillations. We therefore write the equa-
tion for |D, |, defined by the formula:

‘ D,;=|D,|¢“l.

In place of (45) we obtain (acourate to the first power of Aoyk)

the two equations: |

| Dasy || Dy | = | ¥y || Dy, | 08 (%y = 294+ y); (52)
An=—|¥,lsin (% — 27+ ¢,

whexre 12 is the phase of !2.
We first integrate the first equation in (52):

{19 coman
| Dy|=Dyeo ;
u= gy —270+ ¢ (53)

The integral contained in (53) can be taken by the method of
steepest descent, assuming the phase Yk to be constant. Indeed, the
saddle points for the two equations will be the same. Consequently,
Agyk is equal to zero at the saddle point. Therefore

===+ 4

The prime denotes here differentiation with respect to k. We can
neglect the quantity ¥",, since it is of the next (higher) order of
smallness compared with u'. The position of the saddle point is deter-
mined from the condition

W= ¢ =287, 4§y = — (% — 7 ) — 287, + ¢;=0.

The shift of the saddle point from the resonance point 2u — n/2 = O
i1s usually not very considerable, and we shall neglect it henceforth.
This introduces, of course, an uncertainty in our calculations. For
the cases of practical interest, however, the initial amplitude of the

oscillations in the proton synchrotron of.the USSR Academy of Sciences
is sufficlently large compared with the additional amplitude due to the
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resonance. We can therefore solve Eq. (46) in practice rather simply
by successive approximations, taking as the zero-th approximation the
initial value of Dk' At any rate, the method which we are using yields
perfectly satisfactory results for our case. In addition, as we have
already noted, it is not diffiocult to carry out a numerical summation
of (46) which, as shown by experiment, consumes only a few hours per

‘ trajectory. .

After passing through resonance, the integral in (53) is equal to

fi¥ateomuane ¥ /7 s =) (54)

. =1+ —F ), b=
vwhere U, is the value of the phase u at the saddle point and An is the
change in n, during one revolution of the particle.

As can be seen from (50) and (51), the correction introduced by
the linear sections will not play an appreciable role, if the first
harmonic is not one order of magnitude smaller than the third, fifth,
etc. harmonics. A more important circumstance is that the presence of
the linear sections shifts the resonant value of ng.

As 1t executes radial-phase oscillations, the particle may pasa
through the resonant reglon many times, and the point of maximum devia-
tion of the frequency can lie in the resonant region. In this latter
case Expression (54) is not valid, for pu' = O at the point of maximum
deviation. Courant [44] proposed to use as the stationary phase the
phase at this point (which we designate by the number 2 to distinguish
it from point 1, where resonance takes place).

We shall essentially follow Courant from now on, with one excep-
tion: in place of the Bessel function we shall use the Airy functions
(50]. This enables us to simplify noticeadly the final formulas and

combine three cumbersome expressions into a single simple one.
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At the point 2 the derivative is u" & 2u' = O, Therefore

q-u.+l'(k—k.)+mi'-£+ e (55)

[
Ve b
| u’! co s dkme T ’(_W(.-) )eou..

where v(x) is the Airy function (in the notation of V.A. Pok (501);

m--«(i-}-%)@(%)v (56)
=(1 4 9) 40} /5
.~=——E-— (.e).‘
where AB is the distance from the point at which ng = 0.79 to the
point of maximum deviation of the particle which executes radial-phase
oscillations with amplitude A and with frequency

o= 3d=F /"5 (57)
It can be shown that at sufficiently large AB Formula (55) goes over

into (54) with accuracy to within the difference «/-'__23/1.

6. Significance of Resonances of Fast Oscillations to the O tion
o ccelerator

The role and the significance of the resonance at n = 0.79 is es-
sentially different from the role and significance of the resonance at
n = 0,84,

~ Let us consider two stages of accelerator operation: the injection
process and the acceleration process. The resonance at ny = 0.84 1s
harmful and dangerous only during the period of injection, for Auring
the time of acceleration the radial oscillations rapidly decrease and
move the particle away from the resonant regilon.

The resonance at n = 0.79 is not dangerous during the time of in.
Jection. To the contrary, in some cases 1t may prove useful. Indeed,
as can be seen from (53), (54), and (55), depending on the value of:
the phase the amplitudes of the ostcillations can both increase and de-
crease. The particles in which the amplitude decreases can become ef-
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fectively captured in the acceleration mode. Barden ([51] considered a
similayr case of Inlectlon in the detairon. He assumed the Iindex n to
be independent of the radius and close to its resonant value. His vari-
able was the azimuthal asymmatéy.* However, Barden's case is far from
reality in either the betatron or in particular in the heavy-particle
accelerator. Apparently, our case is of great significance rof all
types of cyclic accelerators, when the 1nJec§10n is from a region where
h 1s close to unity. The influence of the investigated resonance on
the injection in a betatron was considered in detall in a paper by
A.B. Kuznetsov [52].

Iet us apply our formulas to the 10-Bev proton syhchrotron of the
USSR Academy of Sciences. Let An = 0.02; hy = h3 = hg; hy = hy = —=h.
Then Eq. (53) assumes with the aid of (54) the following form

Dy == D "o, (58)

Since in this case hg does not exceed 0.003, the increase during
the time of passage ““rough resonance is not more than 5% of Dk’ This
quantity is on the order of the pitch of the turning orbit during the
time of injection. At the start of acceleration the amplitude of %ﬁ.
radial osclllatlons attenuates over the period of the phase oscillé-
tions by the same amount. Thus, if An = 0.02 or more, the resonance
under conslderation hardly influences the injection process.

The resonance plays an entirely different role during the accel-
eration period. If the amplitudec of the radlal-phase osclllatlions is
so large that the instantaneous orbit falls into the resonant region,
then oscillations can bulld up gradually owing to the multiple passage
through resonance. In order for such a bulldup not to occur, it is
necessary that the amplitude of the osclllations be attenuated by the
increase in the magnetic field during thd period of the phase oscilla-
tions more than it Ilncreases as a result of resonance.

- 143 -



"

Let us consider an example. Let 4B = O; eV, = 6 kev; W, = 10 Nev;

R(bno/aa) = 100; A/RO = 0,02, Then

’ Dyr=Dygtthons, (59) ee
The exponents turn out to be approximately twice as large as in (57).
This' is understandable, for in our example the radial velocity changes
direction at the resonance point. The orbit of the particle is there-
fore in the resonance region for a relatively long time. However, if
Aﬁ/ﬂo Z 0.001, i.e., 4B & 3 com, then the exponent in (58) decreases by
16 times. Thus, the resonance at ny = 0.79 is quite peaked. Of course,
the sharpness of the resonance (and to a smaller degree its magnitude)
depends on the value of R(ano/aR).

We see from the foregoing analysis that in the proton synchrotron
of the USSR Academy of Sciences free radial oscillations of the par-
ticles can actually build up if the amplitude of the radial-phase os-
cillations is sufficiently large. But if the resonant value n, is suf-
ficiently close to the edge of the magnet pole, then it 1s always pos-
sible to make the percentage of the lost particles negligibly small.
Indeed, as shown in Chapter 5, during the accelerating mode the par-
ticles captured are essentially those with small amplitudes of the
radial-phaqe osclllations. Moreover, we shall show that the optimal
injection mode occurs at Vb = 4.6 kev, when the radial-phase oscilla-
tions occupy only one half the region between the average orbit and
the injector. Therefore if the resonant value n, is located at a large
distance, the erfect‘under consideration will not play any role.

During the time of acceleration it is expected that the pole
piece will become saturated and the points ny = 0.79 and n, = 0.84
will shift into the magnet. However, the attenuation of the radial-
phase oscillations is much raster..

Thus, by taking sultable measures, it 1s possible to avold the in-
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fluence of these harmful resonances.

The influence of other possible resonances in the higher orders
san be considered in analogous fashion. However, an analysis of all
he posslibilictles shows tras ::.:he reglon frozm .55 %0 L.TS there is
no danger of resonances. Consequently, the techniocal specifications of
the magnet stipulate specially that ng lie within these limits in an
appreciable portion of the working region (140 out of 160 cm).

The correctness of our statement 1is conf;rmed also by the success-
"ul operation of betatrons and synchrotrons with n ranging from 0.6 to
.75,

§7. Different Cases of Resonance with Slow Phase Osciliations

Resonances with slow phase oscillations are usually not considsred
in accelerator theory for the following reasons: a) the frequency of
the phase oscillations is hundreds and thousands of times smaller than
the frequency of revolution and the frequency of the fast free oscil-
lations; b) the frequency of the phase oscillations changes suffi-
clently strongly during the acceleration process; ¢) the frequency of
the phase oscillations is usually much larger than the commercial fre-
quencies (the frequency of the magnetic field, etc.).

We shall now show that item "c" does not hold true in the proton
synchrotron of the USSR Academy of Scilences. Indeed, owing to the
large dimensions of the installation, all the frequencies, and partic-
ularly the cyclic frequency of the phase oscillations, are considerably
reduced.

Figure 10 shows the variation of the frequency of the phase os-
cillations fl = ml/éw during the time of acceleration for a voltage
Vb = 8000 volts and a multiplicity q = 1.

The frequency fl changes from ~2000 to ~700 cps. If multiple rea;
onance 1is used, then the frequency fl is increased by a factor , /g.
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The increase in vo also increases the frequency of the phase oscilh-‘

tiom‘approxi.mately as 4/70 The rrequenojr rl is considerabdly influ- ‘

enced by the value of the index n (in the relativistic case £; ~ ) |

~ 1/({1 - n), and in the nomrelativistic case
h- V—.———-—I'T:'.‘_’-’TI)

The magnet windings are fed from a l2-phase rectifier. Conse-
quently, the magnetic fleld will contain a certain component ﬂﬂ{ nome-
inal frequency 600 cps, and also harmonics with frequencies 1200, 1800,
2400 cps, etec.

An estimate and the experience with the 180-Mev proton synchro-

tron have shown that the amplitude of these components is quite small

(on the order of several hundredths of a gauss). But if the frequency
of the phase oscillations is equal at some instant to one of the fre-
quencies indicated above, then harmonic field components of small amp-

litude can play a considerable role.

. The magnetic field can be written in the form

H(t)=H, )+ )}. hysin (j2¢ + ¢) (60)

Where Q = 2m 600 radian/sec, and Hy a slowly varying funotion of the
time.

Iet us consider several possible cases.

1. The frequency of the accelerating fileld does not follow the

high-frequency oscillations of the magnetic field. In the right half
of the phase equation there appears an oscillating term, which we now

calculate. If ouwr magnetic field exceeds the thecretical value by aH,
then the particle energy increases, for a specified revolution fre-

quency, by an amount

rAl
8B, = jrr—myRF (61) \)
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Substituting the value of AE in the first equation of (I, 17), we
obtain |

dy B d eVyr _Vecosgy .
(.%xr‘z) St +Ms
My — =S 3 hBeos 0+ (62)

“r \’h,mmom+ ).

j-l

.

Here and henceforth we neglect the terms of the form ﬁAH} abAH,
etc., assuming them to be negligibly small.

2. Prequency of accelerating field changes so that the radius of
the equilibrium orbit remains constant. In order to obfain the oscil-
lating time in this case, it is sufficient to separate the oscillating
part in the expression for cos mo. For this purpose, we substitute
(61) in (I, 23) and obtain

M= "'""" *—-yLt, (63)

In addition po the cases considered above, other factors can also
lead to resonance. For example, if the supply of the generator of the
accelerating field is from a rectifier, then the amplitude may oscil-

late for the same reasons as the magnetic field:
Ve=vy(1+ 5 by cos(i+-4a). (64)
The frequency control system may also cause the frequency 6r the
accelerating field to oscillate:
..,=%+ > ¢ sin (j+ 4,). (65)

We are considering a discrete spectrum only. (It is not difficult
to consider also a continuous spectrum.) Let us calculate the coeffi-
clents M. .

]

3. Amplitude oscillations. By direct substitution of (64) into
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the phase equation we obtain:

M= lhr-ﬁ-;bjm(im'i'?l) (66)

4, Prequency oscillations. If an amount Aw is added to the fre-
quency, then 1' increases by A‘; = M0, Therefore the additional term in
ths phase equation is

d/ B
=)=

=—:;;—;§C.vi9°°‘(lm+1u)-‘ (67)

§8. Calculation of the Passage Through Resonance in the Linear Approx-
on

We make the following change of varilables in the phase equation:
?=gota (68)
and assume that %0 is a constant or slowly varying function of the

time, while the deviation a is a small alternating quantity, the aquare
ot; which can be neglected. As & result we obtain

7o (mest)+ Kz = 4, con (/01 + ), (69)

J=1

where
. B oV ¢ sin
m.. _.-———.:KF' . k..= —'Fh. .

and the quantities AJ will have their own values for each of the fowr
cases considered in §7. For example, in case (1) [see (62)] we have

A= e AT (70}
In cases (2), (3), and (&4):

zm.n.

A‘,"—- (1 =8k, j9; (71)
AP = —;'f- cosgy - by A =—mygjc,2.

Iet us assume that at the instant t ] the frequency of the phase
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oscillations is w; = .‘/ ket/mer = JQ, then only the J-th term will be
of significance in the entire sum in the right half of Eq. (69). We

can therefore neglect all the other terms of the sum. The solution of

the corresponding homogeneous eguation (68) is known:

¢ \ -, -,
o/ e et S .
The particular solution of the complete equation (68) 1s deter-
mined by the well-known method of varying the constant. The increasing

part of this solution is

‘ A0 b gln—no) :
“ . o= _J ___ _T_—__d‘l
: 2ml (07 ™alh (72)

where
¢ t
1’1=J.l () d=; ':";'—_".1 j2ds.

The amplitude value of a after passage through resonance can be
determined, as usual, by the method of steepest descent, and the char-
acter of the 1n<;rease in the amplitude can be determined with the aid

of the Fresnel integrals. As a result of simple calculations we obtain

V= 4,
V2| wy |mog (87) wy

Subs'tituting in (73) the values of A 3 from (70) and (71) we ob-

(73)

...' —

tain an expression for Xnax in the cases under conslideration. Before
we discuss the obtained result and give numerical examples, we call
attention to two circumstances. First, 1f the frequency Q is not con-
stant, then Formula (73) will contain, obviously, in place of the quan-
tity lel the quantity |¢.»1 - Q|; second, the use of Formula (73) is
permissible 1if %o x resulting from the numerical calculation is smaller
than unity.

In the 1l0-Bev proton synchrotron ‘:"1 .1s a small quantity when g ~
~ 1, and when B8 ~ 0 the frequency Wy is practically constant. Therefore
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even very small harmonic components of the magnetic field and of the
frequency may exert during the time of resonance a very strong influ.
ence on the amplitude of the phase oscillations.

Iet us give two mumerical examples.

1. The resonances with frequenéy 600 and 1800 cps can be elim-
inated, i1f necessary, by varying Vb during the’time of operation of
the machine. Therefore, let us consider resonance with frequency 1200
cps. The value of él depends essentially on the magnetic field index n
and on the value of eVb. This dependence is particularly strong, es-
pecially at low energies (up to 1 Bev):

o, A5 —2x -.600
for w) = 2m-1200; n = 2/3; V, = 6000 v; H = 4000 oersted. Substituting
the values obtained in (73) we get
|2l = 120k,; |a2), | =240k, (74)
where h2 is in oersted. Thus, a value of h2 on the order of 0.01 oer-
sted can result in large phase oscillations. In this case h2 is only
0.00025% of H, but h2°JQ amounts to about 2% of dH/dt.

From the foregoing example 1t is clear that even when h2 = 0,01
oersted it 1s necessary to take into account the nonlinearity of the
phase equation.

2. Six-phase rectification in the generator supply.system leads
to oscillations of Vb; the amplitude of this oscillation is 0.3% and
the frequency is 300 cps. Higher harmonics of the fundamental fre-
quency also appear. fhe amplitude L - is in the worst case (w1 ==

= 27 600; @, = 2m-100)

1

&l

a.u==l,f

cbyeetgz, \—':%- - 1001),.

Ir bJ amounts to 0.5%, then Gnax = 0-5.
3. Let us consider the oscillations of the frequency of the ac- ¥
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celerating field. In this case
[
bm=VF &

If . = 1, then C, = Ja&»l/n ~ 15 ~ 50 ops.

Thus, small perturbations at resonant frequency can cause suffi-
ciently large phase oscillations, which again leads to the need for
taking into account the nonlinearity of the problem, which turns out
to be quite appreclable. .

§2. Calculation of Passage Through Resonance with Account of the Non-
earity o e O8C ations

We are not in position at present to solve the nonlinear problem

completely. However, the existing methods, and primarily the averaging
method, enable us to solve the problem by assuming the nonlinearity to
be small. This essentially makes the results of the preceding section
more accurate, since the rate of passage through resonance is small

and therefore even a small nonlinearity changes the results appreciably.
Indeed, in the linear approximation, when &1 =+ 0, the amplitude of the
forced oscillations tends to infinity for all values of AJ [as can be
seen from (73)]. At the same time, when the nonlinearity is small and
the values of AJ small, the amplitude of the phase oscillations remains
finite 1n the case of interest to us even when w = 0.

The physical reason for this phenomenonbhas been explained long
ago [53]. When the amplitude of the phase oscillations increases, the
frequency of the oscillations decreases, so that the particle goes out
of resonance.

In the proton synchrotron of the USSR Academy of Sciences the fre-
quency w, of the small phase oscillations decreases very slowly during
the course of acceleration. However, during the passage through the
resonance the amplitude of the phase oscillations increases, which

rapidly brings the system out of resonance. N.M. Krylov and N.N. Bogol-
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yubov [53] called such systems actively nonlinear, to distinguish them
from passively nonlinear systems, which do not limit the amplitude in
the absence of damping.

We shall show that the direction of passage through resonance is
very important here. If the time and amplitude dependence of the rre-_
quency of the phase oscillations act in one direction (1.e.,
(Mi/dt)(éwl%) > 0), then the nonlinearity itself assumes the
role of "effective friction." This is precisely the case during the
entire time of acceleration in accelerators. The account of the small
nonlinearity enables us to obtain not only a qualitative but also a
quantitative result. This method, however, does not enable us to con-
slder the passage of the particle through the separatrix on the phase
plane. The latter question can be treated only qualitatively.

For the calculation we used the work of Yu.A. Mitropol'skiy [34],
who developed and mathematically Justified the use of the averaging
method for systems with slowly varying coefficients.

We introduce in the phase equation (62) the dimensionless time

1=Iu‘dl. (75)
where &, 1s the frequency of the small phase oscillations [see (69)],

and carry out expansion in powers of a [see (68)]. As a result we ob-
tain

¢'+¢=—¢(?ctgp,—f(-:-—Dsin 1;)-}-:’ ;—:-ctg%—i%—-h']. (76)

where ¢ 18 a smallness parameter, which in the final answer must be
set equal to unity, while the prime denotes differentiation with re-
spect to T and '

dinwym,, D A2 dr,_;f_
v 0 U Vesiny Wt e’ (77)

dy,
T‘:=E=E"+.E‘"
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et us estimate the dimensionless quantities contained in (77),
for the parameters used in (74):
3220710~ D=/ Lo Pl (78)
§=2=0,7.10,
where hJ is expressed in oersteds. Thus, D is on the order of several
hundredths or less.

We seek the solution of (76) in the form [34]:

®==8008 T4 au, (s7; a; n; )3ty ..
7= §; " (79).

F=0n 6 Dbyt st (s 6

Substituting (79) in (76) we obtain the equations in the first
and second approximation for uy and Uye The left halves of these equa-
tions will contain expressions u"l +u, or u"2 + u,. From the right
half it is necessary to eliminate the terms with cos ¢ and sin % in
order that the solution contain no secular terms. Equating the coef-
ficlients of cos y and sin v to zero, we obtain the equations for the
determination of 8y, 2y, bl’ and b2.

In place of the procedure indicated above, which is well known in
oscillation theory [53], we can multiply the initial equation (76)
first by cos y and then by sin v, and integrate within the limits from
0 to 2r with account of (79).

Both methods yleld the following first-approximation equation

0 3 .
"' 2ab,=5- —Dsin;

(1—-8 5

(80)
({— E)aﬁb‘ + 23, == —D cos ).

Solving (80), we obtain

D cos

bG== 1+

; b,_..-—-{-—sm 4

2 1
u,=-—'1-(i-3-cos21)ctg qa,,—mcos;’» .

(81)

We analogously find the second-approximation equation
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aon? em;jg a8,
sin {3 1
(t-t>¢%+2¢-—9rl.*% 3%31" ~

. .
Solving the equations in (82), we obtain ‘ )
Dlln dt  Dalcosy(1—18
4W=0 & BT E%(a'— 9 (83)
D cos Dasiny(5—35) Set o
"-"-‘(Tﬁ?z:""r—fn—z’: e =t— % %' %t

Finally, the sought equation has the form

emaoon(n§)—F [1—F con2nt9)] etg oy~ o cosBn+#);
=S [rmwie] - R ()
F=t—t-S(1+3ege)F o+
+(l :n)c[i'*' w::ff:;)-(g-)-i) +-?lcl.;ﬁdf

We first find the stationary solution, equating the right halves

of (84) to zero. Eliminating ¥, we find the algebralc equations re-
lating a with €. Figures 35-37 show the results of the numerical solu-
tion of this equation. In the interval of the values of a, D, §, and
dé/dt of interest to us, the terms containing au, 5, and 4¢/at do not
play any role (as shown by numerical analysis), nor do the second
terms in the square brackets of (84). Therefore, for an analytical in-
vestigation it 1s sufficient to use the simplified third-degree alge-
braic equation (although the numerical calculation can be carried out
also with the complete equation):

@——hzhe o100 _,, (85)
1+ getgty u+E)(x+-3-e¢g=-,-,)

where the minus sign corresponds to the stationary phase at ¥ = +m/2

and the plus sign to the stationary phase v = —m/2.
Equation (85) will have three different real roots, if

16(1—5)’(1+E)’< 6,75. (86)
( +-ctz’fo)
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If the inequality sign is replaced in (86) by an equal sign, we obtain
the condition for the existence of one multiple and one simple real

root. If Inequality (86) is not satisfied, then only one real root ex-

ists.

For what follows we need to iknow the value of the multiple and
simple roots when the inequality sign in (86) is replaced by the equal

q

§7)

'y

9 2a,,

[

0 . . >

& a8 g2 w y 12 p
3

Fig. 35. Statlonary reso-
nance curves. The depend-
ence of the amplitude of
the phase oscillations a
on the ratio £ of the
frequency of the external
action to the frequency
of the small phase oscil-
lations for D = 0.02 and
cos 9, = 0. 1) Upper

stable branch; 2) upper
unstable branch; 3) lower
stable branch.

sign:

16D
= : =2 R
|8m] er:gza:;yr lampl=2|am]. (87)

Formula (87) has been derived accurate
to 1%.

The investigation of the stabllity
of the stationary solution leads to the
following results. The upper branch of
the curve, corresponding to the station-
ary phase ¥ = +n/2, is stable. Of the
two lower branches, corresponding to the
stationary phase —m/2, one is stable and
the other not. The boundary between
;hese regions is a = a,, [see (87) 1.

Inasmuch as the quantity € = JQ/bi

increases in the proton synchrotron of the USSR Academy of Sciences,

the representative point moves over the lowest left curve up to the

stabllity region 80 (see Figs. 35-37). At this point the amplitude

increases rapidly (it approximately doubles), and then decreases. We

note that the maximum amplitude will occur at £ < 1, i.e., resonance

sets 1n before the frequencies of the small phase and forcing oscilla-

tions are equalized.

Inasmuch as the frequency of the small phase oscillations 1n'thn

- 155 -



' A Py - -
7 ’ ' 0 0 ! Jd A e b Y
@ @ g w2 {u T R
. . ) :
Pig. 36. The same as in Fig. 37. The same as in
Fig. 35, but for D = 0,02 Fig. 35, but for D = 0.1
and cos P = 0.5.. and cos 9% = 0.5.

proton synchrotron of the USSR Academy of Scienpee changes very slowly,
the true resonance curve will be close to the stationary curve. Unfor-
tunately, knowledge of the resonance curve 1s still not sufficient to
Judge the motion of the particles with different initial conditions.
Only after a very strong perturbation, following the passage through
resonance, are the amplitudes of the oscillations of almost all par-
ticles equalized. It must be borne in mind that on going over to the
ungtable branch, damped oscillations with amplitude ~a,., are produced
on the stable branch about the new equilibrium position. The amplitude
of the oscillations 1s on the order of one half or two thirds.or the
distance between the stablility limit and the upper stable branch of
the curve., The exact form of the curve can be obtained only as & re-
sult of numerical integration of (84) for D = 0.04 and & = 0.0001.

The initial conditions were chosen in such a manner, as to make
the amplitude of the'oscillations equal to zero away from resonance.
Thus, the continuous curve shown in Fig. 38 1s the true resonance
ourve. The dashed curve is obtained for the case when the amplitude of
the phase oscillations away from resonance 1s ~0.2,

We note that were the represented points to be located on the up-

per curve, then the amplitude would not increase in resonance, but
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would decrease monotonically. Such a case can occur for sufficiently
large oscillation amplitudes. However, in order for it actually to bde
realized, 1’cl is necessary that the phase of the initial oscillations
be equal to +rn/2. ‘

The maximum amplitude in the stationary case is equal to %
[see (87)]. In our case the maximum amplitude is somewhat larger (by
25-30%4). This is seen in Fig. 38, obtained as & result of numerical
integration of (84). We express 2a,_, in terms of the amplitude ,ﬁ:"),
calculated in the preceding section, in order to show the extent to
which an account of the nonlinearity changes the final result. ‘With

the aid of (73), (77), and (87), we obtain:

- 3,2 S\R 0
R T LEUCC L

let us consider an example corresponding to (74) and ctg P = 0.€
2, = 0.55(%1“))1/3. Thus, whereas in the linear theory a,g';n) -1,
in the nonlinear theory 2a,, = 0.55. If qlii") = 2, then 2a,_, = 0.69.
We see that the amplitude of the nonlinear oscillations changes within
narrower limits.

Thus, the final theoretical formulas for the four cases considere

in the end of §7 are:

3,2 Ay e
V= R (o)
2) = 3.2 &xRiMAy . w, v.'

“ (H-’}et;«,,)"'[ Vosing, ] " (99)
3 2= ﬁ;—)‘i(h og 90)*; (91)
9 2=t (. (92)

(i + -:;'-ctg' 9.)”' 1

Thus, an examination of the nonlineu: case enables us tio relax

greatly the requirements concerning the size of the field harmonics,
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Fig. 38. Dynamic resonance curve
obtained from numerical calcula-
tions (D = 0.04; cos 9 = 0.5;

6 = 10'4). The dashed curve shows
the change in the amplitude of
the oscillations at initial amp-
litude a,. ., = 0.2: 1) upper

stable branch; 2) unstable

branch; 3) lower stable branch.
the frequency of the accelerating field, etc. The major accomplishment
of the theory is the possibility of obtaining analytic formulas for

the nonlinear oscillations.

Manu-
;:gépt [Footnotes]
No. |
119 This was also pointed out in the paper of Blachman and
Courant [38]. .
143 In Barden's calculations, the azimuthal asymmetry was as- V)

sumed constant. Its variability was taken into consideration
in the discussion of the results.
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seript (List of Transliterated Symbols]
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No.

125 Cp = sr = sredniy = avuuée

148 oﬁ'- of » affektivayy = effective

149 Hau = nach = nachal ‘nyy = initial

153 NUH = 1lin = lineynyy = linear

155 Kp = kr = kriticheskiy = critical

155 np = pr = promezhutok = section
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Chapter 5
INJECTION THEORY
§1. Introduction

The effectiveness of the injection method determines the intensity
of the beam of accelerated particles, since the main particle losses
occur during the injection. At the same time, a theoretical ahalyaia
of this problem is exceedingly difficult. It is sufficlent to state
that in spite of the numerous attempts we still have no satisfactory
injection theory for the electron accelerators, betatrons, and synchro-
trons with betatron triggering. This is connected with the fact that
in betatrons and synchrotrons the injection efficiency is determined
by the interaction of the particles with one another. In addition, an
important role is played by the space charge, secondary-electron emis-
sion, etc. From among the large number of particles, only an insig-
nificant fraction enters the acceleration mode. However, the short
lifetime of the main mass of the "lost particles" exerts a serious in-
fluence on'the entire injJection process.

The picture is entirely different in the 10-Bev proton synchro-
tron. The large volume of the chamber, the insignificant inlet proton
current (500 microamﬁerea), and the good collimation of the beam en-
able us to neglect the particle interaction and to stay within the
framework of the one-body problem. Indeed, the Coulomd charge would
start to play some significant role only if the proton current would
increase by 10,000 times compared Qith the indicated value.

Thus, we have to solve the problem of the motion of a large nume
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ber of particles in a specified magnetic control field and electric
accelerating fleld.

Among the aggregate of initial conditions, we must find those
that ensure resonant acceleratién without collision with the injector
and with the chamber walls. '

The proton beam emerging from the injector will be assumed speci-
fied. An important independent problem 1is to ?alculate the motion of

 the particles from the injector-accelerator, which is 10-12 meters

away from the chamber. This problem was solved by A.A. Kolomenskiy [26],
and will not be discussed here.

Different variants of injection were developed by ﬁhe author in
1949-1950. We present here only the final variant, chosen to trigger
the 180- and 10,000-Mev installations.

Let us describe the injection method briefly. The particles are
introduced from the linear accelerator with the aid of lenses, a turn-
ing magnet, and an electrostatic deflector (Fig. 39) into the working
region of the magnet, where the magnetic field index is n < 1.

During the first stage of the injJection the accelerating electric
fleld is turned off. The instantaneous particle orbit is gradually
pushed from the injector toward the central orbit. The radius of the
instantaneous orbit 1s determined by the energy LI of the injected par-
ticles and by the magnetic field H(R, t):

_ VT,
”—cllllf.:)' (1)

Inasmuch as the injection energy is constant, R varies in proportion
to 1/H(R, t). The change AR in the radius of the orbit during the time

T of one particle revolution is

nr
Alt:”(l——_—:T)_IT‘" (2)

where Hi' H1 are the magnetic fleld and its partial derivative with
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respect to time at the instant of injection. At an injection energy 4
Mov we have T = 7.5 usec, H, = 104 oersteq, &1 = 4000 ocersted/sec, n =
= 2/3, and AR = 2.4 cm. The value of AR varies in inverse proportion
to the injection energy. For example, at a l10-Mev energy AR = 1 om.

)
-/
2 |
]
/ I = ¢ 5 by
| .
|
]
\:\::
R\I}
8N
\\]
]
s

Pig. 39. Diagram for the injection of
the particles into the accelerator: 1)
linear accelerator; 2; shield; 3) dual
magnetic corrector; 4) adjusting capac-
itor; 5) turning magnet; 6) sector; 7)
chamber; 8) inflector.

At the present time, for several reasons connected essentially
with the possibility of obtaining the theoretical magnetic field dur-
ing the instant of injection, the chosen value of energy is LI 10
Mev. The contraction of the orbit during one revolution can be regu-
lated between 1 and 3 cm by short-duration forcing of the rate of change
of the magnetic field.+ ‘

If we denote by p, the distance from the injector to the central
orbit, then the first injection stage (without the accelerating elec-
tric fleld) continue; for a time 7,, where

WETT (3)
q-u—mﬁﬁ.

We shall henceforth call the quantity Ty the injection time. When W, =
= 10 Mev, p, = 50 cm, and AR = 1 cm, the injection time 1s T, = 240 psec.
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After the instantaneous orbit has reached the position of the
central orbit, the second injection stage begins: the admission of the
particles into the accelerator chamber is stopped and the accelerating
electric flell s curned on. We.shall agsuze that the second injection
stage continues for one period of the phase oscillations (about 500
usec).

The particles which did not collide during the first injection
stage with either the wall or the injector will be called the par-
ticles "captured" during the first stage. The capture of the particles
during the first stage depends on the angle of departure of the par-
ticles from the ejector, y, the rate of constriction of the orbit, the
value of p,, the injector dimensions, the structure of the beam of in-
Jected particles, etc.

The pﬁrticles captured during the first injection stage -as a re-
sult of the constriction of the instantaneous orbit. Indeed, it can be
readily shown that the effect of damping of the oscillations, which 1is
proportional to H‘l/e, is negligibly small compared with the constric-
tion of the orbit (approximately 50 times smaller).

The particle leaving the injector executes free radial and ver-
tical oscillations about the instantaneous orbit, and the amplitude of
the radial oscillations 1s always larger than or equal to the distance
from the point of departure to the instantaneous orbit. The particle
does not collide with the injector (with a probability close to unity)
if after three to six revolutions the instantaneous orbit 1s displaced
by an amount larger than the difference between the oscillation ampli-
tude and the shortest distance from the injector to the instantaneous
orblt, measured at the instant of departure of the particle from the
injector. '

In order for the particle not to collide with the chamber walls,
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the amplitudes of the radial and vertical oscillations should be
smaller than the distance from the orbit to the corresponding wall
(for more accurate determinations see the next section).

At the second injection stage (called also the transient mode), -
slow radial-phase oscillations are added to the free oscillations.
This raises again the question of collisions between the particles and
the injector. It is obvious that the sum of the free and phase oscilla-
tions should be less than the distance from the equilibrium orbits to
the injector. Moreover, for resonant acceleration in the proton syn-
chrotron mode, the initial phase of the particle (°nach) and the phase
velocity (6nach) should satisfy certain conditions [see (I, 58)].

If the current from the inJjector 1is equal to I, then during the
injection time Ty the number of protons entering the chamber 1is Ixi/b.
The number of particles captured during the first stage is Q1 -

- Itinpnz/é, where " is the probability that the particle will bypass
the injector and the vertical walls of the chamber, and Ny is the
probability that the particle will bypass the horizontal walls of the

chamber. N =1,0, is the capture coefficient of the particles during

the first stagepof injection. In the second stage, some fraction Q =
- Q1n2 of the Ql particles will be captured, where Mo is the coorri;
cient of tﬁe transient mode. The product of both coefficients will be
called the injection efficiency. Thus, the efficilency of the injection
is equal to the ratio of the captured particles during the injection

time to the number of particles admitted into the chamber:

1= = (4)

Along with the quantity np we shall use the number of effective
revolutions of the particles:

k'S v it (5)
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The quantity Np 18 equal to the ratio of the number of particles

which do not strike the injector to the number of particles emitted

during one period of revolution.

2. Pundamental Assumptions Made During the Calculations
We are faced with the problem of caloulating the injeotion effi.

ciency, by solving the dynamic problem of the motion of many particles.

The efficiency turns out to be quite sensitive to certaln parameters

s §

:

07 2 7 65 § Vwnd
olapemed

Fig. 40. Percentage of
particles not striking
the injector after the
first six revolutions,

for different values of
the index n. The injec-
tion energy is W, = 4 Mev,

the distance from the in-
Jector to the central or-
bit is Py = 50 cm, and

the maximum angle of de-
flection of the par-
ticles from the optimal
direction is v, = 10.2°%

The dot denotes the the-
oretical value obtained
from the approximate for-
mula. 1) Theoretical
point; 2) number of revo-
lutions.

of the installation (in particular, to
the magnetic field index n). In practice,
however, it 1s impossible to obtain a
definite value of n specified with high
accuracy. In designing such a tremendous
installation as the proton synchrotron
of the USSR Academy of Sciences, we are
unable to connect the injection method
with the attainment of some high accu-
racy in the value of n. In the fundamen-
tal part of the working region of the
chamber, n will be within the limits
from 0.6 to 6.7.

For practical purposes it is quite
essential to determine the dependence of

the injection efficiency on the main

parameters of the magnet: 1) the size of the magnet gap; 2) the devia-

tion of the magnetic fields from the theoretical value; 3) the charac-

teristics of the injector, namely a) the energy of the injected par-

ticles, b) the angular and energy scatter of the particles, and ¢) the

geometry and location of the injector; 4)' the characteristics of the

high-frequency accelerating device, namely a) the effective accelerat-
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ing voltage, b) the multiplicity, i.e., the ratio of the generator fre-
quency to the particle revolution frequency; 5) the rate of change of
the magnetic field (the forcing); 6) injection methods.

It turns out that the dependence of n on the foregoing character-
istics can be determined with a high degree of adcuracy. At the same:
time, the absolute value of the injJection efficiency n needs to be
known with an uncertainty amounting to a factor of 1.5-2. It 1s Qesir-
able further that the error result rather in an underestimate of 1
than in an overestimate.

Starting from the foregoing, we have made the following assump-
tions: 1) the damping of the free oscillations during the inJjection
time and the damping of the radial-phase oscillations during the phase-
oscillation time can be neglected; 2) the particle beam admitted into
the chamber 1s homogeneous in density and in angular spread at any
point; 3) the principal losses occur during the third and sixth revo-
lutions after the particle leaves the injector. Were the injection to
occur in a constant magnetic field, then 50% of the particles would be
lost during the third revolution and the remaining 50% during the
sixth revolution.

The first assumption, as indicated above, is easily Justified: an
account of fhe attenuation results in a correction amounting to 1-2%.
The second assumption 1s not a princlpal one. Were we to have experi-
mental data, they cou}d readily be used. Preliminary experiments 1nd17
cate that the deviations from homogeneity in the beam will not be
large.

The most essential is the third assumption. In the installation
of the USSR Academy of Sciences, the particles execute during the
first injection stage only 20-50 révolutiona, 80 that it is not 4iffi-
cult to determine by numerical calculation the particle loss due to
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Fig. 41. The same as in Fig. 42. The same as in
Fig. 40, but for W, =10 Fig. 40, but for W, =10
Mev and 7y, ='10.1°. 1) Mev. 1) Theoretical point;

Theoretical point; 2) 2) number of revolutions.

number of revolutions.

collisions with the injector. Such calculations were actually carried
out in the paper of A.I. ?aboyev (55]. The inJjection efficiency is a
sharply oscillating function of n with many gaps. During the injection
perliod, when the eddy currents and the remanent magnetization play an
important role, it is impossible to maintain n constant with a high
degree of accuracy. Consequently, the rapid oscillations have no phys-
ical meaning.

However, it 1s possible to obtain with the indicated degree of
accuracy analyfical formulas which make it possible to choose correctly
the accelerator parameters.

let us consider the following imaginary experiment. Let n = 0.66 +
+ 0.06- and the magnetic field be constant, and let protons be admitted
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into the accelerator chamber. Then, as shown by numerical calculati&ﬁ:

no particles are lost at all during the first revolution, from O to 208

are lost during the gecand revolution, and from 30 to 60% on the third ‘ )

revolution. After six revolutions the main bulk of the particles, up
to 90%, will be lost, and the main losses occ%r during the rfifth and
sixth revolutions, while practically no particles are lost during the
fourth revolution. ,

This picture can be made rougher. In the first approximation ua.
can assume that all 1008 of the particles are lost during the third
revolution. The second more accurate approximation 1s the statement
that 50% of the particles are lost during the third revolution and 50%
during the sixth. If now the magnetic field is varied in time, then
some of the particles will avold collisions with the injector, and
furthermore, if we assume our approximate assumption, then the losses
will be-produced only during the third and sixth revolutions.

Getting ahead of ourselves, we present the results of the numer-
ical calculations in Figs. 40, 41, and 42. The ordinates in these fig-
ures are the rercenteges of <he rartli:zles =hat Iic rnot collide with the
injector after several revolutions, the number of which is laid off on
the abscissa axis. The same figures show also the percentage of par-
ticles notvcolliding with the injector, calculated on the basis of the
third assumption (the "theoretical point").

From these and many other calculations it is seen that our method
gives a sufficient dégree of accuracy in all thé cases of interest to
us.
$3. Capture of Particles During the First Injeotion Stage

In the first part of the calculation we shall take into account
only collision with the injector aﬁd vertical walls of the chamber and
calculate the value of “p‘ We then introduce a correction Ngs taking
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into account the particle loss due to the collisions with the herisen-
tal walls of the chamber. .

Assume that a particle beam with radial dimension 22 (s admitted
into the chamber of the accelerator. The beam subtends an ARgle ’ml‘lf
The beam axis makes an angle ¢ with the optimal directioen,

The angle of particle emission, relative to the optimal dtrgotgon.
will be denoted by y. We introduce also symbols for the BAXImM M |
minimum angles:

N=Teat 8 = Tnu—"
These and other symbols are explained in PFig. 43.

In place of the angle vy, which is measured in radiano, it is oon-
venient to introduce an angle a, expressed in terms of other dimengion-

less units:

R,
==
av¥i—n'

where the value of f is given in Fig. 21, while Py is the distance
from the injector to the central orbit (see Fig. 43). We shall denqte
the angle a with the same indices as the angle 7v:

Tt Ty t-es, (6)
The amplitude of the radial oscillations is, in accord with (I3, 41)
Fo=VutyF+, (7

where u = po/p,; ¥ = x/py; F, = oscillation amplitude/pi. (8)

The meaning of p,x 1s clear from Fig. 43,
The oscillation amplitude Fc exceeds the distance fram the injeq-
tor to the orbit by an amount
AF=VEF T o—u. (9)
We assume that the collision with t“g injector ococurs at the
third and sixth revolutions. Consequently, in order to guarantes the
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Pig. 43. Notation scheme used in the
calculation of the injection effi-.
clency. The hatching denotes the
chamber wall, the wavy line the re-
gion between the injector plates,
the dashed line the optimum beam di-
rection, and the so0lid line the ac-
tual direction of the beam axis. I)
Instantaneous orbit; II) average or-
bit; O) origin of x coordinate.

absence of particle losses, we must stipulate the fulfillment of the
following inequalities: '

arg Rt ar YR, (10)
In order for the particles not to collide with the chamber walls,
we satisfy the condition

AFL S _’.(EL', (11)

1(-%)
Ir s(£(o,)/f(kn/4)]1 <38R/p,, all particles which would be lost in the
third revolution as a result of collisions with the injector, are ac-
tually lost during the first and second revolution, owing to collisions
with the chamber walls. We therefore write for the third revolution in
place of (10) and (11) ‘

AF L a,, ' (12)
where a, is the smaller of the two numbers 34R/p, and s(f(o,)/f(xn/8)]. )
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Analogously, for the.sixxh revolution we write '
Ar<ae, (13)
where a, is the smaller of the two numbers 6AR/p, and s(f(o,)/f(xn/3)].

As shown in Chapter 3, thc‘deviation of the magnetic field from
the theoretical value is taken into scoount in the following manner.
First, the size of the magnet region employed is decreased by the
amount of the azimuthal asymmetry. The qpant%ty Py which is contained
in our formulas is reduced in proportion to it. Second, the optimal
direction for the emission of the particles is changed.

For example, in the 1lC-Bev proton synchrotron, the working‘region
of the magnet will be 160 cm, of which 40 cm drops out as a result of
the azgimuthal asymmetry and 10-15 cm is lost because of 1haécuracy in
the initial frequency of the accelerating r1e1¢. The value of 'Pi will
be on the order of 10-15 cm. Consequently, the maximum value of Py
does not exceed apparently 50 cm.

1. Parallel particle beam. Let us consider a parallel beam of par-
ticles, emitted at an angle ac to the optimal direction. The number of
particles captured during a time dt from the points of the beam with

coordinate x; x + dx is

In place of the time dt we introduce the amount of constriction of the
instantaneous orbit dp,:
T
dl =mdp',

where T 18 the time of revolution of the particle, and we change over
to the dimensionless variables:
dQ" = 2Adudy, (14)
where '
. _IxT
T QR0
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and U = 2-A/b1 is the dimensionless width of the beam. Let us integrate
(14) under the assumption that & can assume with equal probability the
two values a, and a,, and obtain )

QA [ [dudy, (15)

Cmm. L} -
where the integration regions ¢, and ¢, will be determined by the in-
equalities given below. The first two inequalities are obvious

o<y<y, (16)
e F el —uge, (17)

The next inequality takes into account the fact that the instantaneous
orbit is constricted only to the central orbit, and then the accelerat-
ing field 1s turned on. Therefore the oscillation amplitude Pc cannot

exceed unity:

Ve Fag. (18)

[ ]
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Fig. 44. Domains of integration (cross hatched) of
the integrals (15) for two cases:

A WO, g u; B) <o %> 8

The lower boundary is in acocord with Bq. (17); the

upper boundary is in accord with Eq. (18); the

gigh?ig?nd boundary for case A 1s in accord with
q. * N

)

Figure +44 shows the domain of integration for two different cases.
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It is seen from this figure that the maximum possible value of y is
determined by the intersection of the boundaries of domains (17) and
(18), and 1is equal to

y,=e,—14-vT=a,, | : (19)
The sotusl width of the beam U can be either larger or smaller than y,.
We introduce the quantity '371, which is equal to the smaller of the two
numbers U and y,. If we integrate first with respect to u, then the
limits of integration are

L
“—y

Su Vi=dd—y, (20)
0<y<pa
After simple integration we obtain

0:=A§‘{[(~/T—_-!+ a‘-—{t)v.+-‘§-)n‘r;ﬁ]. (21)

Iet us consider two particular cases. Let the beam width T bde
larger than vy Then

Qe 2 [1+-‘}—§-=:—u—z-.)~/i‘——-:+

4ARD Lo
o lp i ‘:“- f]. (22)
or approximately
3 'Y L
Q:zh’—}‘,—fo-}._:a,[1+-}‘-—;-;-‘.xnz—‘_,ﬂj, (23)

where @ 1s the base of the natural logarithms. From (22) we can readil.

= Q4. It depends on the value

obtain the maximum permissible angle a. g

of 8,
¢y =Va,(2—a) ~ VZa, (24)
In order for the number of captured particles to be large, it is

necessary to have
]

s, < V2, (25)
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Iet us consider a second particular case. ILet the width of the:
bean be smaller than y,. This case is realized if

' \<V‘cu"'¢3 = dy, (26)
where ‘
4=a—0. (e
It is then necessary to substitute U in Eq. (21) in place of "ii
1]
a=gh S[ar gt s ing].  (28)

The quantity N introduced in §2, can be readily obtained from
(22) and (28):

__ QiR

":— '1"‘ * (8)
2. Beam with scatter. In order to find the number of par-

ticles captured during the first injection stage, it is sufficient to
multiply (21) by dae/aumu and integrate from the minimum to the maxi-
mum angle (—a,; +°1)' Since only the square of the angle is contained
in all the formulas we get

o.-gj'o:;"_‘: (30)

(we leave out the indices of ¢ and a). Each integral in (30) breaks up

into two parts: when a < '&81 -J21-(2 — @,) it is necessary to use Ex-

pression (28) for Q" amd if a > '&si Expression (22) should be used.
If the angle oy is larger than the maximum permissible angle “gi

"si' If the angle ay

is smaller than “gi’ the integration is carried out to the angle Cpe
Taking into account the foregoing remarks, the integration 1is

quite simple to carry out. To write down the final result in the most

(24), then the integration must be carried out to

concise fashion, we introduce a function of the two independent vari-

ables:
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3
0 + i =R I s, (31)

where
._{.. 1f < Vald=0):
O Vali=3)me,, 1f &> Val—0)

Iet us investigate the behavior of the function ¢. If a > Gg1 then

O(a; s)m(s; Va )=

[ 4 (1 §e)wrosnGT=D]. (3]

Plea)
L) =060

w / / , ;l
" 5 24
4 A C
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- /A/, a2
|Zasuuune

w s
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0 & e @ 9 &5 U ¢ 4 dl“ll

Fig. 45. Plot of the function ¢(a, a)
in accord with Formula (31) for the
calculation of the number of particles
captured during the first injection
stage.

When a << 1 we have approximately
oo, vaB—a) =12 &% (1 +59)- (33)
The difference between the two values of the functions 1‘
(: (s, 0)—0 (8, o) =3{(a—VI—af+(a—a)arcsine, +
)

+252 1wl | (34)
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We can now write down an expression for the number of particles

captured during the first stage, in general form:

’ )
| Q:-—il"uf- ggl‘”(ﬁ: o) —o(4; a)l- (35)

33

Plots of the funotion ®(a, a) for different values of a are shown
in Pig. 45, where tlﬁ abscissas are the values of a.
" Ist us consider several particular cases.
1. Assume that we have a broad beam with large angular scatter.

Then for 0 > a, (4 > ,\/ai(a - "1)) we have

v Sl 5+ (- FaJersna],  (36)

m~% ;42"(1 +5%%) (37
when a, << 1.

PFrom (37) it follows that the intensity increases in proportion
to p-?_/ag (AR)l/a, and (N)3/2, where N is a parameter of the theory
(the number of "effective revolutions" without colliding with the in.
Jecéor). Since the width of the beam and the angular scatter are large,
the intensity is inversely proportional to the angle subtended 2“-.:
and to the beam width T.

2. If the width of the beam 18 T < a, (q, > Jai(a - ‘1))' then

27 [ 8" = (a; = 0

1
LT L = 5 (1-}-%0‘)-}-%(@—0)':.}. (38)

3. In the limit.as U = 0 we obtain
X
B T % (1+T)' (39)
[T

The intensity increases in this case as
63/2; (R)"M2 ana N2,
4, Let us consider the case of small angles but a broad beam:
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where %nin is the minimum value of the angle a. In this case

o=l 3 S 1 -t

s o IO T
Approiimately we have (for a, << 1; gy K« 1)
a2 et + -3 (1-$nsk)]. (42}

5. When the angle subtended and the width of the beam are small,
then

| =
—ga(1-30) -5 Jar(+ 4. (t2)
when |
V& (2=a) < <Va,2—=a) !
s
LA [
n'~-—_“—‘-‘;’~3¢.[\/1—c:+nrclin¢.+ |
ety ], (43)
when
a < Ve, (2= a,).

We have conslidered all the particular cases encountered in prac-
tice, with the exception of the so-called "mixed" cases, i.e., we as-
sumed that both angles a and ay satisfy identical conditions for dboth
values\of a,. The method of writing down the expression for np or qu
in the mixed cases 1s obvious: one of the terms in the double sums
should be replaced by a corresponding term from the sums (37)-(43). To
save space we shall not write out these expressions, all the more since
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Pormula (35) covers all the poasible cases. The application of the Obe
tained relations to the proton synchrotron of the USSR Academy of ‘Sci-
ences will bde givonf below. - RN

3 Caloulation of the corrections for collisions with the horie
sontal walls of the chamber. Inasmuch as the angles in the radial (y)
and vertical ({) directions are small, we can consider motion in the.
two directions independently. . ;

We denote the beam dimension in the vertical direction by 2x, the
angle subtended by the beam by 2f,, the vertical working dimension of
the chamber by 2Dz, and the displacement of the beam axis from & di-
rection parallel to the central magnetic plane by €ge The amplitude of
the oscillations has a maximum at the center of the sector and is

equal to

s 3\ TEER

where f,(c,/2) and £,(3,) 18 the value of the function f at the center
of the sector and at the point of the injector (see Pig. 21) for the
vertical oscillations ( z, 1s the coordinate of the particle emitted
from the injector). The optimal angle {o 1s small and ranges between O
and 1', so ‘tha.t it can be henceforth neglectéd. .
We introduce the notation
wE) _ eE)a

R £ T (44)

.
ALY REA
Az )x.==z.. 'I_(:ﬂ‘=“-~

Then the amplitude of the oscillations can be expressed more sinply as
B=VIT. (45)
In order to prevent collisions with the chamber walls, we must have
VIEFE KD, or o, KVIE—R=a,,, (46) )
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where Gg is the maximum permissible angle. For different points of
the injector (’v ) this angle assumes different values.

The probability of not colliding with the chamber walls is obvi.

ously
b

Y 4
ds,
v [, (47)
~lv =%z, ' .
where q'l and -cxz2 are the maximum and minimum vertical angles, ex-
pressed in the units defined in (44).
Iet us consider three cases.
Case 1. Let the angles of emission of the particle be sufficiently
large, 1.e., |la, | >D,; |a, | >D,, and @, > O. In this case the do-
1 2 1 '
main of integration in (47), on the plane (az; zv), is a circle of
radius Dz. truncated by two symmetrical chords: z, = Xy and z, = Xy*

Calculating the area of this figure

zsaz[i,VEf"‘,—l:+o;m.in-B:], (48)
we obtain
= st
T Zapmity (49)
where the upper sign 1is for azl, aza > 0 and the lower one for Gy »
p
a < 0.
Lo

Case 2, Ie_t the angles of emission be small, 1i.e.,
VDI=g<le,|<D, and VII=3<|s,|<D, (s, >0

In this case two segments are cut off from the integration domain cone-

sidered in the preceding case by two parallel chords a, = a‘l and a, =

- == .
Zo

, > >
Iet us introduce the coordinates z, = «/ Di - azl and % = ni - 3'2,

for which the maximum permissible angle is, respectively, czl and 0‘2.

Then - : ' ‘
m-[o+c,.q:‘-imllnﬁ.t]-l;.[*‘f'q‘l‘:ﬁ““"n&]' (50)
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where the upper and lower signs are written for the cases a, > 0 and

z
. 2
0'2 < 0, respectively.

A ' ‘)

¢ l}J l:‘l s 7°
Ca

Fig. 46. Percentage of par-
ticles colliding with the hor-
izontal walls of the chamber,
as a function of the deviation
e, of the beam axis from the

angular half width £ (2xv =
= 12.5 cm; 2D, = 25 cm).

Case 3. Let the emission angles be even smaller, 1i.e.,.
| I<VE—E
‘nd '
|2, <VDI=%, &, >0.
The integration domain degenerates into a rectangle

vy oy, (51)
Mixed cases. In analogy with the preceding, we can write down also
the mixed cases. For example, 1if |
. 85D, || <VDI—¥

then

=g, (52)

We see that Pormula (52) consists of the first part of (49) amd
the second part of (51). To facilitate the calculation of the mixed

cases, we have purposely broken down the expression in the numerators
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of (49) and (51) into two parts, the first of which corresponds to the
angle a’l and the other to the angle age. *

A plot of n, for different values of { and e, is shown in Pig. 46.

L. Application to the USSR Academy of Sciences proton synclipotzon.
Figures 47-50 show four groups of curves of n, for different values of
the parameters of the 10,000-Mev installation of the USSR Academy of
Sciences. '

If the beam has a sufficiently large a.n‘glo scatter, then it is
ea.sy.to obtain satisfactory intensity even when the error upon injec-
tion is large.

In the case of a parallel or nearly parallel beam' and a very small
value of the error g, the value of Tp is of course even larger. How-
ever, for any appreciable value of ¢ the intensity immediately tends
to zero. For example, when p, = 30 cm, dH/dt = 4000 oersted/sec, and
€ ~ 0.2° we obtain for an almost parallel beam Ty = O. A parallel beam
with error ¢ = 0.15° yields the same intensity as a beam with a larger
angular divergence ('Yma.x ~ 1°) with error e = 0.8°. '

A certain improvement is obtained for a parallel beam with erro-
neous injection direction by forcing the derivative of the magnetic
field. For example, for dH/dt = 12,000 oersted/sec, a parallel beam,
and an error e = 0.3° the intensity still remains different from mero.

From this we draw two conclusions.

1. In order to adjust the apparatus it 1s necessary to use a beam
with large angle scatter. Generally speaking, owing to the negligible
aperture of the inlet unit, the beam will be almost parallel. One of
the possible ways of increasing the beam entrance angle is to apply to
one of the pair of plates used for the admission of the particles an
aiternat:.ng voltage with frequency larger than the particle revolution
frequency. It is obvious that the obtained beam with varying direc-
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Fig. 47. Number of effective
revolutions 1\,1, as a function

of the deviation € of the beam
axis from the optimal direc-
tion and of the angular half
width v, of the beam (the

angles are given in degrees).
The injection energy is wi -

= 10 Mev, the distance from
the injector to the central
orbit is Py = 50 cm, the beam

width is 5 cm, and the change
in the magnetic field 1is
dH/dt = 4000 oersted/sec.

tion is equivalent to a beam with large angular spread.

2, To adjust the machine it may be useful to force the derivative

of the magnetic field, although if the apparatus is in stable operation

and the injeotion is at ocorxrect angles, this foreing will not de neces-

sary. Forcing is also useful if the injector increases the intensity

while decreasing the injection time.
Thus, in spite of the fact that the value of AR, (the conatriction ‘)
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Fig. 48. The same as in Fig. 47, but
for dH/At = 10,000 oersted/sec.

§ g 4w 4N N

Fig. 49. The same as in Fig.
47, but for py = 30 cm and

dH/dt = 12,000 oersted/sec.

of the orbit) is large compared with AR for medium scale accelerators,
the problem of particle capture in a 10,000-Mev installation encounters
a difficulty of its own. A 7-9' deviation of the angle of particle
emission from the specified direction causes the particle to strike

the injector.

Attention must be called also to another unfavorable cirocumstance.
During the first stage of the injection, the capture is most effective
i1f the deviation of the instantaneous orbit from the injector is large.
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large amplitude of free oscillations and will be poorly captured in
the second stage of the injection (see the next section). O

Therefore most particles which do not collide with the injector have a

Fig. 50. The same as in Pig. 47
but for Py = 30 cm.

The most convenient would be powerful but brief injection with a

favorable position of the instantaneous orbit, using a forced value of
aH/at. .

On examining the plots in Figs. 47-50 we can make the unequivocal
conclusion that the overwhelming majority of particles will be cap-
tured during the first stage. For this purpose it 1a necessary to sta-
bilize the 'direction of the particle admitted into the chamber with an |

accuracy of several minutes, which apparently is feasible.

4. Distribution of the Particles among the Oscillation Amplitudes _
er _the Firs ection Stage (

In the present section we consider the auxiliary problem of the

distribution of the particles among the oscillation amplitudes after

the first stage of injection. As will be shown below, this greatly
facilitates the calculation of the‘'second stage of injection. As in

the preceding section, we consider first a parallel beam. )

Ot ettt o
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1. Parallel particle beam. In order to find the distribution of
the particles among the oscillation amplitudes, it is necessary to in-
troduce the amplitude F, in the integral (15) in place of one of the '
variables (u or y) and :l.ntogra.t; with respect to the second variable.

For example!
2 r.dr,
du= T = v | (53)
where the sign of -the root coincides with the sign of (u + y),
Q[ dyfedl,
=4 3V (54)

tam} ?
%

The integration domain °'1 is plotted on the (y, F) plane for different
cases (Fig. 51). lLet a, > a, and

12 .
a‘—;-:-<6<¢,—-1 +Vi—di=y,

o | % PSRt/ e SRV PR e
0:"_";;{ ...7’?:—-“_% 2 ] dy+._’-j' dy |+
[ e %
K eV} . .
+‘{7f=':_% ‘J: d!/+‘!:%:?!dy : (55)
where
"2='-'—::—."—'2; '
= ':;j:; (56)
&,=a,—0.

From this we obtain immediately the distribution of the particles

among the oscillatlon amplitudes:
64— <I<y; o, <oy

Z’L‘&:ﬂ,.uben o <F,<Fg

V;‘: - a'.‘
b ]
O dF = 4dF, > | THESEL - F,, When £, <F,<F; (57)
[2%3 ¢ (] -
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Pig. 51. Integration domeins (ocross hatched) of the in-
tegrals (55) for different cases:

i

I I
] .

—

L3

A > ot B) 5>, 4>60) =0, <.

Integration is carried out twice over the domain I.

Expression (57) remains valid also when U > y, and a, > 8, (for

arbitrary U), if the following rules are employed: 1) if r"c >1 1t is

necessary to assume F"c = 1; 2) if any eipression in (57) becomes nega-
tive, it should be assumed equal to gero.
On the other hand, if a, < a, and T < a, - (a2/a,), then
22, (0 — ) .
7%5:.::;.-.mn‘¢3:n o <FLF u °>,“""‘

¢ L]

T;-“.’:‘:f.when o, <P ad<e—q;

|
:
Q,dF == AdF, S -— .
. "2 | Fute a;_ﬁ_ ..,__’v) —~F,when F, <F,<F;
. g y

J £
7’.:.':‘_;:. whenf < F,< 1.

(58)

The values of F', and P  are determined in (565.

It follows from:(57) and (58) that as the angle a, decreases, the
particle distribution among the oscillation amplitudes for ,o >» .'1
beoomes more and more uniform. This is particularly clearly seen in
Pig. 52, which shows the probability density q"l,c/q"“ as a funotion of
the amplitude Fo’

y(r,)_%?m for Iy (59)

-
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2. Beam with angle scatter. 'In order to obtain the distribution

of the particles among the oscillation amplitudes in the presence of
an angle scatter of the particles, it is sufficient to multiply Formu-
las (51) and (58) vy dnc/'aql|l and integrate over all possible lnﬁlcl a,
taking account of all the inequalities presented above.

e

p0£) ‘ 2”( £)
u B
" ay=8d 1
Al {2y
¢ 42
2t ' , @t

oW o
{0 gt
4 Gyl 4
L) “
% &
at 42
o @ a6 ¢ 9w Y T B TR T BT Fl w

% 3

Fig. 52. Distribution of
particles among the oscil-
lation amplitudes for a
parallel beam and various
errors a, in the direction

of the beam axis, a; =
= 0.1; a, = 0.3 (the value
of a, for each curve 1is

indicated on.the right
side).

Assume that we have a beam with a large angle spread. Then we Ob-
tain after integration

Fig. 53. Distribution of par-
ticles among the oscillation
amplitudes for a broad beam
with large angle scatter.
Curve 1 18 in accord with the
approximate formula (63),
while curve 2 is in accord
with the exact formula (62).
al = 0‘1; 8.2 = 0.35 U 2 0030

=0F,, wheno<r, <4 ;

?,. .—.—‘;dl'. E s(a,—F) b, - (@), When <F < (60)

©, (a) —w (a)when 3<F, <1,

where
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O, () =1, VEF,—5)— (¥, —z)ucm" Ly (61)
0,(3)1-,-—:"'9/7; (i "'76'7.'+ )
- vhen ¥, >> x.
Let us caloulate the probability
density '

whero Q, u given by Pormula (35). At ape
proximately F, >> a, we have [see Pormu.
las (33) ana (37))

. e eedn P *(Fc =T}ﬁ:' (63)
' &2 46 4” {9 )

A comparison of Formulas (62) and
Pis. g{fé: bt :? a‘x'xa.rigow (63) .18 shown in Pig. 53 for different
bean. (€= 0). values of a, and for a broad beam. It is
clear from this figure that the approximate formula (63) represents
well the probability density v(Fc) over almost the entire interwal of
variation of F,.

For a narrow beam, a comparison of Formulas (62) and (63) is shown
in Pig. 54. We again reach the conclusion, which is important for what
follows, tha;t the width of the beam influences only ‘the oscillation '
amplitude distribution of order a,.

The form of the function ¥(F,) is more greatly influenced by the
character of the mguia.r scatter of the beam. We can roughly assume
that all the possible values of the probability density '&(l'o) 1ie bde-
tween the two extreme values given in (59) and (63). T™he only excep-
tion from this rule is the case when the particle beam is very narrow
but the error in the emission ansle. is large. Then the distribution is,
roughly speaking, also close to (59), but with F, >> a,. This case,

- 187 -



although it can arise in the adjustment and starting of the machine,
is nevertheless an exception in the case of a normally operitmg O

chine. It willl also be considered balow. -

cillations arise. The particle will not collide with the injector aur-
ing the second‘ata.ge ifr .

Fo4-0,.<, (64)
where &, = p,/p,, and p, 1s the a.nplitude of the radial-phase oscilla-.
tions. |

In addition, as shown in Chapter 1, the amplitude of the radial-
phase oscillations is uniquely related with the swing of the phase os-
cillationa P = 9. Figure 9 shows a plot of the function

,,..;‘z,(%)za. (65)
where p is the maximum amplitude of the radial-phase oscillations. The
connection between p and the parameters of the installation is given
in Formula (I, 40).

At first we consider for simplicity accurate turning on of the ac-
celerating field in the absence of an energy spread of the particles.
By definition, in "accurate turning on of the accelerating field" ého
frequency of pa.rt.icle revolution equals the frequency of the accelerat-
ing fielqd, i.e.,

&’nach = 0. (66)

The amplitude of the accelerating field is established rapidly
(within 10-15 psec) compared with the period of the phase oscillations
(~500 usec), and therefore we can assume with good degree of accuracy
that the amplitude 1s established instantaneously. In this case, if
Condition (66) is satisfied, the initial phase of the particle ®nach >
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> (=9) 1s equal to one of the two maximum values of the phase (o, or
’2)‘ Inasmich as (92 = 9,)/2n is always smaller than unity, not all of
the particles will ba subjected to proton-synchrotron acceleration. .-

If the amplitude ‘of the free oscillations:is equal to ¥pys thetr-
the amplitude of the radial-phase oscillations should be less than
ps(1 = ¥,). Multiplying the probabilities of these two events and ine
tegrating over all pogubl_e values of F, we obtain the trmliont-uoe
coefficient:

1
%= i. (&(l.;;!-{)) 2(F) '”"¢=. I 8 (F.)% (F)dF., ( 67)
[} s ‘

where '&(Fc) is the probability density of the given value of the amp-
litude P, after the first injection stage, determined in the preceding
section. An analytic expreuion for the quantity T cannot be obtained
in the general case, if for no other reason than the fact that there
18 no analytic expression for the function e. A numerical integration
of Formula (67) entails no difficulty. |

~ However, for many important particular cases we obtain an approx-
imate expression for e For this purpose it is necessary to approxi-
mate the function e. It is possible, of course, to expand the function
in powers of pA/_ , but this series converges poorly. We shall there-
fore seek an approximating function using as guidance the following
principles: the approximation must be quite accurate for amall PA/5
and approximate for p,/p ~ 1. Indeed, as follows from Inequality (64)
and Formula (67), the‘ particles subjected to proton-synchrotron accele
eration are those for which p,/p is small. Figure 55 shows: plots of
the function 2me(p,/P) = ¢4(p)/F) (dashed) and of the two Wa
functions e PA/'S) (80114 lines) for the values of cos ¢, of practical

importance:
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where lcl = 0.2 and k2 = 0.25. Purther calculations have shown that at
both values of the constant k we obtain the same expression for 7, in
the region of values of ® of practical interest. In general, the sec-
ond term in the square bdbrackets of (68) gives rise as a rule to only a
small corxrection. | y '

4T~ R

Wwr

Ly

R R T T TR A TR T Y

Fig. 55. Comparison of the exact (dashed) and roX-
imate (I and II) curves for the function ¢ (PA P

given by Formula (68). Curve It e =14

R SR o

- 9, ctg 9, (a+025a ), curve II: € =l&4
- 9, cte 9, (a+02a ); for the curve I, k=
= 0.25 while for curve II, k = 0.2.

1. Iet us calculate Ny for the case of uniform distribution of
the amplitudes after the first injection stage. This case corresponds
to a monoenergetic parallel beam. With this simple example we can also
analyze the computation technique. If the beam deviates from the op-
timal direction, then approximately all the amplitudes from a, to 1l

are represented: '
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., 1 '
s|w(t="F,) |dF, - .
[l e, ~
x[}(’i-—r.)dr.-i--"é }u-—r.rdr.]. | )
~ “ o

In the course of integration it must be borne in mind that if the argu-
ment of the function e(x) exceeds unity, then ¢ must be regarded as
equal to g, . in pocord with (68):
.,,..!L-_hgmfi[a—c.+%(t—c.)']. !'henp>m-:m ‘
"wp s  Skmfi 4 4 '
T e 2 (S LEt £ (69)

“when p < py = a.py; here x = p/p,.

2. Iet us consider a monoenergetic beam with large angle diverg-

ence. In this case

-

=3[ (fu—ro]VEer,. (70)

Integxrating, we obtain
- Ih 3
"gq.(x Yectg ) [1+%$'} whenul=:> 1;

‘swﬂ__e'ﬂ!ﬁ{i—(i—z)’h{- (71)

+,'%;r"‘[1—u—=)*-(t+%z+%='~-‘-:=')])-

when x < 1.
If we assume that we have a distribution
$(F)=2F,, (72)
which is a poorer representation of reality, we obtain a simpler ex-
pression:
= Nl —weigw) [,,*_;'é.‘,'], 1f &>

‘_; N(t-y::llh)"' [’_(1__,):.'_?&:(1-—2(1:—2)')( (73)

X(3—z+3:’))]. ir =<t
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comparing (71) and (73) on Figs. 56a and 56b, we can verify that the
difference does not exceed 15%. We make use of this fact in what fol-

lows.

gr

q0%y
o

4025

;um.mwcawa%w&dwn@rawmjw%n?m
°‘J

Fig. 56a. Transient mode coef-
ficient Mo for a monoenergetic

parallel beam as a function of
the voltage Vb. The upper

curve is for accurate injec-
tion; the lower is for the
case of an error a, = 0.25.

The injection energy is W1 =

= 4 Mev; distance to the cen-
tral orbit is p; = 50 cm. 1) v.

qam}
gt ! an’ el
Tpwbmacen-
“ay wan Seowynn
%
450 +

Lo A N . .
0T 800 SO0 000 TN N SOW SR,
"3

Fig. 56b. Same as in Fig. S6a,
but for a monoenergetic beam
with injection energy 10 Mev.
The upper curve is for a par-
ticle distribution ¥(F,) =

= (3/2) F,; lower — for

*(Fc) = 2F,. 1) Exact formula;

2) approximate formula; 3) v.

§6. Transient Mode with Error in Turning on the Accelerating Field and

for a Nonmonoenergetic rarticle Beam

In turning on the accelerating fileld, an error may arise: either

the accelerating field is not turned on on time, or the beam energy

does not have the correct value. In practice these two factors cause

one and the same result and can therefore be represented theoretically

by one and the same parameter.

Assume that at the instant when the'accelerating field is turned

on the instantaneous orbit is a distance p,M away from the central or-



" OORES p—— ,

bit (by ditinition. oh the central orbvit the frequency of revolution
is *pqnu to the frequency of the accelerating field or is a multiple

of the latter). The VQHO of N is connected with the "error" in the . ‘)
energy AB,: . h
WM Ry s $~0 ™ |
or with the "error" in the turning-on instant:
| 1,.u-n.m’-"-‘f-—". (75)
The phase velocity of the 'pa.rticlu at the instant of turning on
bous =8 @ (0 - ) (76)

differs from gero.

The amplitude of the radial-phase oscillations P depends on the
initial phase ..., and on the initial phase velocity e, .. (1.e., On
p4M). With the aid of (76) and (I, 38-40) we write

3 [(-',1)'— (%&)']-(-in B 74 €08 3,0~ (81t 3, — 3, Con 9, —
. —“n?un""?uuc‘”’.)- ' (77)

As can be seen from (77), 9,,,) 18 & multiple-valued function of
(pA/ii)2 - (llp,_/f:)z. We find for each value (pA/B)2 - (llp,_/ﬁ)2 two val-
ues 9 L < 9, and ¢ > 95, &and set up the funoction

eV ) (m

We call attention to the fact that when M = O the function (78) :

goes over into the function (65), the form of which is Mnmown to us. *

Since M enters into (77) only as part of the combination [(95/5)2 -
- (npiff-’)zla we get

s(x)mmay (2), (79)
Iet us call attention to one difference between (65) and (78). In

(78) ®p -9 is no longer the swing of the phase oscillations, ‘)
nach nach
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when the amplitude of the radial-phase oscillations is equal to Pac In

this case ¢, n -9 n is equal to the region of initial phases,
nac nac
for which the amplitude of the ra.dial-phuc oscillations for specified

| M is smaller than or equal to pA. It is obvious that it is precisely

this qumtity thtt interests us in the ocaloulation of the effiociency
of the second stage of injection (the transient modo)
The a.pproxmate expression for ey has 1n this case the form [uo
(68)1s
on (VAT = LUz Sechne ¢
x (V=T + At — Myvs] (80)
where

ll‘---:f ’ 3-—-' k~0'z or 025.

The maximum value is obtained when p, = p, 1.e., when u, = x = p/p,:
o o LA o [T - L (i ] (81)

The coefficient of the transient mode is in this case equal to
1-x
"= ! o (Y VT=FH =28 )1 (F) dF.. (82)

During the integration it must be remembered that if (1 — Fc) >x
then €y = €. ... In Formula (82) we take into account automatically
that when an error arises in the energy or in the instant of turning
on, there will be fewer particles after the first stage than in the
case of acourate turning on. Actually, in (82) we integrate with re-
aspect to Fc not to unity, but to 1 — M. Thus, we sift out all the par-
ticles that are captured after u increases to 1 — M (u K F,).

let us calculate the coefficient n, for a uniform particle dis-
tribution (v(Fc) = 1):

- 1 L] ', .
=R o 4 e [+ e, (83)
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ﬁ(s)-%[sm+wln|;—é_1‘]: (8%) .
Q(A-§[s¢w~mm—wmlaﬁmu} SR
By definition, if X > 1 ~ o, We must put in Formula (84) x = 1 - a,.
We see from Exppessions (83) and (84) that in order for the coel-
fiocient N to be different from zero it is necessary 'thlt N de i-zm
than x and smaller than 1 — a,. The case ducr:lbed by !omh (83) 1s
realized when an electrostatic generator is used as a source. Indeed,
in this case we have an almost monoenergetic beam with small angle
scatter. However, the average energy of the beam is subject to large
slow oscillations. Therefore M ¥ O, ,
If the injector employed is a linear accelerator, then the enexrgy
scatter 1s large and in each cycle we have an entire set of values of
M. In order to obtain the value of Mo it is necessary to average Yor-
mula (83) over all possible values of M:

Ny
T,
L

In the case of accurate switching-on and a nonmonoenergetic beam,
Wy = =y = My

Carrying out the averaging in (83) we replace the functions 01(3).
¢y, and 02(::) by their mean values:

1 M'
u....u,[ s+\lsi

+ ) arc sin -;]:' H
1 M '
BB = e

+ 4o V=TI 2320 — 2201 +3='.m|n!:-]::

= wﬁ"_‘:r" 57:_,xw.,._‘1+

2 2iMy—M, T

Z?(‘N — M (52t — 201%) 4 3% nrcsln--] (85)

v
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In using Formulas (85), the following should be borne in mind.
The symbol | denotes that it is necessary to subtract from the value
of the expression in the square bracket at M = lé the value of the
same expression at N = M. If 1:1: turns out that M, or lla are larger
than g (or 1 = a,), then we must set M in the square bracket equal to
x (or 1-a,).

For '1'12 we obtain a very simple expreui?n in the case of the
large energy spread (i.e., when M, > x and -M; > x)s

P Yhe 3 . K3 3*.1" 4
A =a (2, —241); ' (86)

. 1, whenas, <F, <1
? (F‘)={ 0, when?r,<a,.

By way of another example it would be necessary to analyze the
distribution of the particles among the oscillation amplitudes for a
large aperture angle of the cone of the particle beam, which is propor-
tional to ﬁ: with great degree of accuracy. However, the integrals
obtained in this case cannot be evaluated in terms of elementary func-
tions.* We must therefore use the less accurate distribution (72),
which gives an undervalued result for the coefficient L (by approxi-
mately 15%).

In this case

s XU
= ——_‘F————-

D, (£) — .;-(z' — M¥pn

2t

+5 l"’*‘) — gl "”""J} F e (1 — 27 (87)

where 01(3:) and ¢,(x) are defined in (84). We recall that if x is
greater than unity, we must set x equal to unity in (87).

If the particles are admitted into the chamber with an energy
spread, then Expression (87) must be aver.aged over M. In the simplest

case we have
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. \-%{w‘?("'m‘h *
B ™

vhere %7 [l -‘;-;;;-r were determined above in (85), and
L TE M g [ MVF T et - i+
| +3z‘arc|lu‘-r-]:: ' (89)

.} (22— MHn ':W:—'_-EY[ANF—'E'— (3354 — 262208 + 8MY) 4
+ 152% are alu-“;'-J:: .
Formula (88) greatly simplifies in the case of a large energy

' spread, i.e., when |M] > x:

{ = o clir 9u)" st
,,=%§L[1_§-s+-i+

+3-"—,:='—'(1—§z+-§-z‘)]- (90)

As already mentioned, the results of Formulas (88) and (90) can de
improved by multiplying them by 1.15.

So far we have based all our arguments on the assumption that the
frequency of the accelerating field and the frequency of particle rev-
olution coincide. If the revolution frequency is g ti;u smaller than
the frequency of the accelerating field, then P in all the expressions
for n, and T, should be taken 4/q times smaller than for q = 1.

§7. Transient Mode Coefficient at Injection Energies 4 or 10 Mev

In the preceding sections we have considered several factors in-
fluencing the magnitude of the transient mode coefficient Noe Among
these factors were: the amplitude of the voltage Vo On the accelerat-
ing gap; the character of the firat stage of injection [form of the
function ¥(F,)]; the distance from the injector to the central orbit
Pys the energy scatter of the particles Awi; the injection energy "1"
and the multiplicity g.
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Fig. 57. Transient mode coeffil-

clent as a function of the volt-
age Vb and the multiplicity g at

injection energy W, = 4 Mev with

distance from the injector to
the central plane Py = 50 c¢n,

. energy spread 4”1/“1 = 0% and

particle distribution ¥(F) = 1.
1) kv.

The influence of all the foregolng factors on this quantity can
be traced on the 12 plots presented in the present section. In partic-
ular, the amplitude of the accelerating voltage was varied from 4 to
10 kv. The distance from the injector to the central orbit was chosen
equal to 50 and 30 cm. The energy spread was assumed uniform (values
of Awi/ki were 0%; +0.5%; +1%). The multiplicity was varied between 1
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Fig. 58. The same as in Fig. 57,
but for W, = 10 Mev. 1) kv.
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Fig. 59. The same as in Fig. 57,
but for Awi/wl = +0.5%. 1) kv.
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Fig. 60. The aamé as in PFig. 57, .
but for W, = 10 Mev and Awi/wi -

n_to.”. 1) kV.
%[
asr

qn

T s ¢ 7 & s
LAY Y

Fig. 61. The same as in Pig. 57,
but for awW,/W, = +1%. 1) kv.
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Fig. 62. The same as in Pig. 57,
but for W, = 10 Mev and AW, /Wy =
’11’. 1) kV.
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Fig. 63. Comparison of the curves
for n, at injection energy W, = 4
tribution ¥(F) = 1 for two differ-
ent distances from the injector to
the central orbit, py = 50 cm
(dashed curves) and Py = 30 cm
(s0lid curves). 1) kv.
)
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and 5. All the numerical calculations were made for two injection en-
ergles, 4 and 10 Mev. The rate of change of the magnetic field inten-
sity was taken at 6.5-10° cersted/sec.

; Qs

5 6 7 87 § »
%. 4
Fig. 64. The same as in Fig.

63, but for 1ngection energy
Wi = 10 Mev. 1) kv.

The character of the injection in the first stage was taken into
account in the following fashlon. The transient mode coefficlent de-
pends on the form of the function v(Fc), of the particle distribution
among the oscillation amplitudes after the first stage of the injec-
tion. We can use here arbitrary varlants, but at this stage of the cal.
culation 1t is meaningful to consider only the extreme cases: uniform
distribution among the amplitudes (¥(F,) = 1), corresponding to a
parallel beam, and a linear distribution (¥(F,) = 2F°), which repre-

M=

gents approximately a particle beam with & large angle spread (21h‘x >
> 0.5%). The true value of the coefficient Tp lies somewhere between
- 202 «
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these two values, depending on the injection conditions. The computss - —,
tional acouracy obtained in this case is sufficient to determine the
intensity of the beam of:accelerated particles and to choose the param- )
eters of the installatdion.

The numerical values which we have chosen for the plots corres-
pond to the "normal" operation of the installation. For example, we
assume that the error in the angle Qe and the arror in the instant of
turning on are sufficiently small. If ae is very large or the turning-
on error is large, then Mo tends rapldly to zero. Thus, we 4o not pre-
sent here the so-called "adjustment graphs," which we have calculated,

since they do not characterize the intensity that can be attained in !
the 10-Bev proton synchrotron, although one could not get along without ‘

these curves to adjust the machine during its startup.

. &
4L

§ 5 ¢ 7 & § »n
Vo My

Fig. 65. Comparison of the
ourves for n, at injeotion en-

ergy W, = 4 Mev, p, = 50 om,

multiplicity q.= 1, for two
particle digtritutions among
the amplitudes of the free os-
cillations, y pg = 1 (dashed V)
curves; and ¥(F) = 2F (solid
curves). 1) kv.
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Fig. 66. The same as in Fig. 65,
but for W, = 10 Mev. 1) kv.
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Fig. 67. The same as in Fig. 63,
but for a different distribution
function (¥(F) = 2F). 1) kv.
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values of Vo range between 5 and 8 kv for all these cases. i

Sm—— " , ! BO———— ?
e ,

Let us proceed to a specific description of the plots.

1, Parallel partiole beam. Figures 57 and 58 show plots of o for
different values of v, and 3 with gzero energy scatter and a parallel ‘)
particle beam. For w, = 4 Mev the maximum value of N, 18 0.17 at q =1,

0.23 at q= 3, and 0.27 at ¢ = 5. At a 10-Mev injection energy these ,
figures increase to 0.23, 0,30, and 0.34, respectively. The opriml !

In the case of a uniform energy spread of +0.5% (Pigs. 59 and 60)
the values of the coefficient Mo differ very little from those given.
above. However, if a 0.5% energy drift were to occur in the monoener-
getic beam, the coefficient Mo would decrease by many times. Therefore
particles with deviation of +0.5% from the average energy are poorly
captured in the acceleration mode, and when the deviation from the av-
erage energy exceeds +0.68 they are not captured at all.

Indeed, Figs. 61 and 62 show plots for an energy spread of +1f.
The maximum value of T, decreases by almost a half. Particles with a
spread within the limits of +0.5% are effectively captured in the ac-
celeration mode, while those having a spread between 0.5 and 1% are
practically not captured. Therefore the coefficient o decreases by
approximately one half.

The réquirement with regard to the monoenergetic nature of the

beam becomes much more stringent if an error exists in the particle

emission angle a. As a crude approximation, when the energy spread 1is

large T, decreases ba; a factor (1 - ae)/[l - 3°‘e(1 - °e)] [see (86)]),

i

while the effective capture energy range decreases by a factor 1/(1 —
- a‘). To save space we confine ourselves to these remarks and do not
present the plots.

Figures 63 and 64 show the mfluence that the distance from the
central orbit to the injector Py exerts on the coefficient Tiae The need \)
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‘Pig. 68. The same as in Fig. 64,
but for a different distribution
function (¥(F) = 2F). 1) kv.
for reducing p4 can be related, in particular, with the increase in
the azimuthal asymmetry. In this case the coefficient T decreases
sharply (by 40-50%) and assumes at 4 Mev values 0.1 (Ani/'w1 = +0.5%)
and 0.06 (Aw:'_/w1 = +1%). At 10 Mev, 712 is somewhat larger: 0.13 (A':I./'i -
= +0.5%) and 0.08 (aw,/w, = +1%).
2. Beam with large angle spread. Figures 6U4, 65, and 66 show a

comparison of the transient mode coefficients for a parallel beam and

one with large angle spread. In the latter case the value of the coef-
ficient 732 is approximately 50% smaller. It must be borne in mind, how-

S e M sl A o it < 25 s sac

ever, that this value 1s closer to reality, for in the first case the
error in the angle a. can greatly exceed '?12.

Figures 67 and 68 show clearly that in the case of a large angle
spread in the beam the value of '1'12 changes with changing distance from
the injJector to the central orbit.

The main results are listed in the table.

Thus, in the worst case when p, = 30 cm and A"i/":l. = 1% the coef-
ficient is T, = 0.05 at 10 Mev and Tip = 0103 at 4 Mev (q = 1).
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TABLE ,
Maximum Value of 'ﬁe (in %) at Injection Energies
| 4§ and 10 Mev A ‘ ' '
a—— v gl
1 § 2 g 3 EPINTSMITRA upit Wi d Mo ~ r5& npn Wimi10 s
i Kyamioems | soproviveeyuR pasipec, %
{10 i o6 [ e ] 1 o Jes] o
' Yum1 17| 1)
=1 Y -] ¢|]—=fnj} 7
0 Y1 © M| 0|4 |0]|n]|y
- =3 (T Iy — -~ - -— - -
L T3 27 | s8] 15 ] &4 | a8 ] 18
=3 et 7, —~ 1| 8| —11]10
Yol -1 9 1|~ {20
=1 Vaut P, -] s s | -] 7]
om0 H. - |l=-f=1-=-1~-1-
=5 b2, ~ lws]| ¢ | — |12} 77

1) Distance from injector to central orbit, om; 2)
multiplicity; 3) characteristic of first injection

stage; U4) energy spread, %; 5) when.

Manu-

soript (Footnotes)

Page

No.

161 For a short time, 50-200 usec, l:l1 can be increased to 12000
oersted/sec.

196 The first integration (with respect to Fc) can be reduced to
elliptic integrals, but the formulas obtained are not oon-
venient for calculations. The averaging over M must in this
case be carried out numerically.

Manu-

script (List of Transliterated Symbols]

Page

No.

163 Hauy = nach = pachal'nyy = initial

197 CP = sr = srednly = average
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Chapter 6
STRONG FOCUSING
§1. Introduction

At the end of 1952, Livingston, Oourant; and Snyder proposed a
method for producing powerful focusing in accelerators designed for
the production of protons with energies up to 50-100 Bev. It turned
out later on that similar work was done in 1950 by N. 6hr13eofilos,
but was not published.

As 18 well known, in ordinary accelerators the focusing force in
the vertical (z) and radial (r) directions varies in inverse propor-
tion to the radius of the magnet

Fom—nll, 2% (1)

Fo=—(—n) 2L, (2)

where H, is the vertical component of the magnetic field, e and-y are
the charge and velocity of the particles, while z and p are the devia-
tions of the particle from the orbit in the vertical and radial direo-‘
tions. In particular, if the radius of the magnet 1s increased it be-
comes necessary therefore to increase the linear dimensions of the em-
ployed region of the magnet gap.

The decrease in the focusing forces makes it dAifficult to obtain
an intense beam of accelerated particles, particularly during the par-'
ticle injection and in the initial stage of acceleration. _

This can be illustrated by means ot.the following example. If the
particle is injected into the accelerator chamber not at the correct
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angle, but with an angle error vy, then the amplitudes of the radial ’5
and vertical Fz osclllations inorease by

=y | @
AF, == V""‘E. -5

where p, and 5, are the coordinates of the injecte‘d particle expresséd
in the variables p and z. It is clear from these formulas that the in-
crease in the oscillation amplitude increases sirongly with inocreasing
radius of the particle orbit. This makes it necessary to increase
either the dimensions of the magnet gap or the accuracy with which the
particles are injected into the chamber. Both methods are usually em-
ployed.

There exist methods which make it possible to increase the effi.
ciency of the focusing forces with the aid of various combinations of
electric and magnetic filelds, and thereby decrease the necessary aper-
ture of the magnet gap. |

Among the other possibilities, Livingston, Courant, and Snyder
(58] considered the most effective way of increasing the focusing,
that of alternating sectors with opposite signs of n.

The present calculation was undertaken in order to explain the
shortcomings and advantages of the procedure indicated above for im-
proving the focusing. We have therefore tried to simplify the problem
as much as possible without attempting to design any particular accel-
erator, but merely clarify the characteristic features of the phenom-
enon, without obscuring it by extraneous effects.

2 ¢ Oscillations and Stability Region

Let us assume that we have 2N identical sectors (see Pig. 69) sudb.
tending an an;le v. In the odd sectors the magnetic field index is
n, <0, vhile for the even sectors n, > 0. Let us assume that on the
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boundary between sectors n changes abruptly frem n; to n,. In addition,
we aspume that linear sections exist. If we do not duun a specifio
accelerator, but are thstod in the uincuurithu of. tho motion,
these two assumptions are not uuntul. It is easy to tale into ac-
oount the linear seotions, and also the transition region between n,
and n,. In such & case, howsver, the formulas and the calculation be-
come much more complicated, although the charaotcr and the s:lnsuhri-
ties of the motion do not change. .

When nx/R << 1 the equation of motion has the form

U=, —g=0, (%)
where
.‘_{ VI—a, — for radial motion )
Vn,— for vertical motion
va,—1 — for radial motion
= —_—

v—n,— for vertical motion
Generally spe#ld.ng, Eqs. (4) have a small range of applicability
with respect to x/R in the case of very large | n. However, if the law
governing the fall-off of the magnetic field is specially chosen, the
range of applicability of (4) will be appreciably larger. The nonlin-
ear tem becoms signir;cant only in the investigation of resonances.
The solution of Eqs. (4) has the form

2 = A sin0 4 Bcosxb; | (5)
Ya=Cshxb - Dchuh,

where X and Xp are the solutions for the focusing and defocusing sec-
tors, respectively. The constants A; B; C; D are interrelated by the
conditions for the continhity of the solution. The angle 6 ranges from

0 to v in each sector:

Camap(Ac—Ls); DsmAsBe, (6)
where
cz==cosxy; s=sinny; P-:';‘L‘ (7
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- Mg. 69. Arrangement of the agcelerator
l::mtl in strong focusing. 1) ete.

Iat us introduce a variable m, which changes by unity on going
from one pair of sectors to the other (see Pig. 69). We shall assume
that A; B; C; D are functions of this variable. Then the continuity

conditions yield the following two difference equations:

A'('"l+""‘l+8u("ci—”'.|l=l‘.ﬂ; (8)
Aule- 5 pc- Gl Bale: 83— ps - ¢} = PAgni

We shall henceforth use the notation:

s,=shwy; ¢ =chxy (9)
The solution of (8) is sought in the form
A =Dd* 4 ¢.Ci3B,=[Dé*+ 0. 0" (10)

We substitute (10) in (8) and equate the determinate to zero, ob-

taining
. =c- “_. I X3 .
cosp == c..'.__%_a (1)

Expanding cos i in powers of v, we obtain

008 px 4 — v (s} — 1) —+* [1%‘1-.(.“3.'.;_‘9’]4.,“, (11+)

where

,:_,:‘,, { 2(1—ny) for radial motion
angy for vertical motion.

It is seen from (8) that
I=h—Is" (12)

fmiiatpry

p
where OO IOR I.-,,,.._..,,-
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The solution of (8) can thus be written in the form
Xo 8 D™ (8) - D (5) e £, (4) 008 fam o= 2. 3], (13)
where

£, O =310y (); ssmargDY;
sinyd-foosnt for the foousing sector

=V em { Ple—foshii+

‘ +(+/)chnd for the defocusing sector.
The n&rmiumg' coefficient of the function v is chosen such as
to make the Wronskian of the functions ¥ and 'vo equal to 2/1.
The condition for the stability of the solution (13) is the in-
equality
love | <1. (1)
If the number of sectors 2N tends to infinity, then the condition (14)
is equivalent to the ordinary condition (1), written out for Ngpt
nop = 2152 (15)
0y <8
This condition can be obtained from (11') and (14) by discarding
from (11') the terms with powers vu and above.
When N is finite and the values of <y and K, are large, the limits
of the 1nequality.(15) broaden appreciably:
| | o < oy < g (26)

< 6 we get approximately
at

When navu

= - ' u-1 A »
T TR (R )

where

,.=;'n;-_~;__.uu.‘;_l.:'zl,

b < 12.3, then

If 6 < n®v



When 12.3 < navu < 22 there is no common stablility region for the ]
" vertical and radial osocillations. The stability region (16) reaches a é
Bmaximum at approximatély .: - ' _ y

AWV w0y
A plot of the stadbility region is shown in PFig. TO.

f ]
2 ¥

(/]

-4st

Fig. 70. Principal region of sta-
bility of the free oscillations.
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Fig. Tl. One of the stability
regions for large values of nv2,

In addition to the region of stability with respect to n, which
is common to the radial and vertical oscillations, we introduce a re-
gion for the separate stability of the vertical and radial oscilla- ) )
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tim, mz and Anp:

WMy = g s Ap == Upt S0, WAL =l

t——a- v
We then have approximately, for n®v' < 12.3:
oqp,'-t—ajgﬂéﬂ. olnu,‘--gg\/(ﬂ»‘—in)(‘;o"”")i
m..,==1—2£=!r';—"ﬂ. lin:s.=£‘-;v(‘"_””)(“e'_0;l)'

- (18)

For very large n, there exists an infinite series of stability re-
gions in the places where cos Q/S& = 0, Figure 71 shows one such re-
gion. The practical significance of such a region was clarified later
on for one of the types of strong-focusing accelerators [20], proposed
by A.A. Kolomenskiy, V.A. Petukhov, and M.S. Rabinovich.

§3. Envelope of Particle Trajectory

Knowledge of the stability boundary is still not sufficient to de-
termine the extent to which the use of the proposed method of improv-
ing stability 1s advantageous. For a correct understanding of the char-

acter of the phenomena it is necessary to calculate the envelope of the
particle trajectory.

As indicated in Chapter 2 (page 96), the amplitude of the particle
oscillations at an azimuth 6 is#*:

Fo= Y Lo 1 00 =50 P) (29)

where v is the angle of entry of the particle into the accelerator
chamber, x.... 18 the initial deviation of the particle from the equi-
1ibrium orbit, and 61 is the azimuth of the injector. We shall show
that for the accelerator under consideration Relation (19) is also ap-
plicable.

With the aid of Relation (19) we can answer several important
questions. !

1. The influence of the deviation of the angle of emission of the

- 214 <



P s oo

LZ-%

particle from the optimal direction on the amplitude of the oscilla-
tions must be known so as to calculate the oollisionl' between the par-
ticles and the injeoctor.:This influence is determined by the faotor
£(e,). _

2. The injection efficiency is also determined by the change in
the angle 7opt during the course of the injection, provided the angle
'Vopt is not very small.

3. The dimension of the accelerator chamber depends also on the
function ¢(9), which determines the collisions between the particles
and the chamber walls.

Iet us proceed to determine the envelope. Assume that the injec-
tor 1is placed at a certaln azimuth 91 = 0; m =0, The initial devia-

tion from the equilibrium orbit was denoted Xpach and the angle of par-

ticle emission by ¥:
l;lu 1 dy
=7(%)
Then we have, in accordance with (13),
Dy (0) + D*%* (0) =tuas i (20)
DY (8)+ D*¥* () =Ry, tae ¢ =3F.
From (20) we readily obtain
Do [1ue¥'® () — RT$*(0))-
The oscillations at a certain azimuth 6 are, in accordance with (13),
sinusoidal with frequency Nu. The square of the oscillation amplitude
1’ L]
FL(0) == &1 Dip (0) o= | uat’ (8) — RY9 (012 (9) 4 () (21)
Recognizing that the Wronskian of the functions v and v* is equal
to 2/1, we transform (21) into

— e (o
RO= {5 et

RIS AR UA Lt SRR AU E TN
- - a— 22

- 215 -

. |

()

V)



t

The optimal angle of emission of the particle from the injector
will be defined as the emission angle for which the amplitude of the
oscillations is minimal. It is seen from (22) that

‘ " .
N ) RS L (23)
where we introduce the notation

O (0) == () §* (0); (2u)

®(9) is the modulus of the Floquet functions. Substituting (23) and
(24) into (22), we obtain the sought-for formula (19), if we put
10) =R (25)
Thus, to determine all the properties of the envelope it is nec-
essary to calculate only one function, 4(6). Indeed, the equation of

the envelope (19) can now be rewritten in the form

[ ] dlad® b
PO = g [l 102 0) (7 — Zgan 20O, (26)
The expressions for ¢(6) will be obtained with the aid of (24)
and (13). We first consider 01(6) in a focusing sector.

After several transformations we obtain

o, (6)=®, (0)+'-;{'-P::-ﬁ—icosa, (v, ~ 20) —cl, (27)
where
o (0)-1—‘:—%—‘1 . (28)

In the derivation of (27) and (28) we used the following identi-

ties, obtained from (12):

-’7;_—_—’-:-_—.—:-; g:—::-c,-kp-s,-c. (29)

As can be seen from (27), ol(e) has a maximum at the center of

the focusing sector:
d',(-;-)—m,(0)+ U= +p) (30)

Snpainp
Iet us call attention to the fact that ¢1(0) - ol(v).
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Pig. T2. Modulus of the Floquet
function of the free-oscilla-
tion equation in the center of
the stability reglon («xv = 1.5;
n, + Ny =ng,, = = 0): A) focus-

ing sector; B) defocu
tor; I) o(6)/v; 1I) &/%(06 ol
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Fig. 73. Plot of the funct
2Fy (1, 5, 0, 8) = 1/nv(a 1n ¢(9)/d9]

vs, the azimuth 6 in the center of
the stability region (kv = 1.5; -
ng, = 0): A) focusing sector; B)

defocusing sector.

Let us consider the envelope in the defocusing sector.

d’,(h;:@l(())-—f,—“—'-t-&)-|c,-—-ch1,(v.-—2f;)|. (31)

drysinp

In the derivation of (31) from (24) we used the identity

+ .
I‘,+r') =a (32)

As oan be seen from (31), 02(9) has a minimum at the center of
the defocusing interval. The minimum value 1s

0,(3) =0, 2ozt (33) )
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A plot of the Ifunctlon $(8) s shown in PFig. 72 for the case when
Ny, = 0 and v4/n = 1.5. Figure 73 shows the values of the logarithmic
derivative of ¢(6) for the same case.

The ratio of the maximum of 6(6) to its minimum is

am Yl t P LEET . (34)

For the values of the function ¢(6) and a given above we can pre-
sent several approximate expressions, which are convenient for estimat-
ing purposes; this will be done below.

If the particles are injected into the chamber from the start of
some sector, then in calculating the collisions with the injector it
is necessary to take into account the value of &(0). In the problem of
collisions with the walls, the quantity'¢1(v/é) assumes the same ‘role.
But these two problems are closely related with each other. Indeed, we
should place the injector at such distances from the orbit, as to maloe
the particle not collide with the wall. The change in distance between
the orbit and the injector also greatly influences the number of par-
ticles colliding with the injector. Therefore, by way of an estimate
of the "convenience" of the focusing method proposed, we introduce the _
concept of "effective radius of the accelerator."

This "effective radius" will have a somewhat different value for

radial than for vertical oscillations. In ordinary accelerators we have

%& for vertical osclllations
R“"—-—R;: A
* 2__ for radial oscillations
i=s (35)

which 1s always somewhat larger than the geometrical radius R.
The quantity ¢1(v/2) can be represented in the form:

228 =nv
o, (3)="Fi(zi 0 amnoph (36)

The focusing 1s the same vertically and radially, if n,, = 1/2
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and a = 1:v2/2 ~ 0. Let us consider therefore the function

o o
£y (o: 0= 298 (1+3 -w-g-...).
4

" ‘-W+ooo

A plot of the function F,(x; O) is shown in Fig. 74, The function
Pl(:; 0) reaches a minimum when x° = ny2 = 225 The minimum value of
P (x; 0) 1s
min £, (z; 0)==3,028, ° (37)
Near the minimum, the function Fl(x; 0) changes very little. Por ex-
ample, in the interval
1,2 <3, (38a)
the function Fl(x; 0) changes by not more than 30%, .while in the in-
terval
1,1<n*<2,8 (38b) .
it changes by not more than 10f. Outside of these intervals, particu-
2, the function F,(x; 0) increases
rapidly. For example, when nve = 3.497 the function is F = 16.6 and
1t becomes infinite when nv® = 3.516.
Thus, if we choose X° = nvZ, say in the interval (38b), we get
Rope = 3VR.
For example, for the accelerator first propdsed for the Brookhawven
laboratory (v = 2.62:1072), R , = R/13, 1f 2500 < n < 4100. In an or-
dinary accelerator with n = 0.6 we have

larly toward larger values of nv

« 1.6 R for radial oscillations
Rer 1.3 R for vertical oscillations

Thus, the effective radius of a strong-focusing aécelerator is
approximately 17-20 times smaller than for an ordinary accelerator
(for the data of the hypothetical Brookhaven accelerator). later on it
became necessary to reduce somewhat the focusing in the projected
strong-focusing accelerators, 3¢ as o dacrease the reguired accuracy
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Fig. T4. Plot of the functions

with which the magnet had to be manufactured. In these projects R,r is
nearly five or six times smaller than R. Let us assume that the sector
subtends an angle v which varies in inverse proportion to the radius R,
and then Rer remains constant, and the optimum value of n along with
the stability region varies in inverse proportion to the square of R.

The oscillation frequency in the range of values (38b) is approx-
imately Nu = Nn/2 = 1r2/2v, i.e., N/4 times larger than the revolution
frequency.

In analogy with the preceding, the functions ¢2( v/2) and 01(0)
can be written in the form

GO ="F, (z; a); Vy(3)="Fy (53 ah (39)
A plot of the functions Fo(x; 0) and Fa(x; 0) is shown in Fig. T4. The
function Fo(x; 0) has a minimum at nve = 2.75: |
min /', (z; 0)==1,345.

The function Fy(x; 0) drops to zero at the limiting value X = J--v -
= 1.875.

The angle Yopt? defined in (23), can ‘be represented in the form

=-7'—"5'-"?-'t,. Fy(z; a; 0). (40)

Tom =

- 220 -



R o » i

] g
. o vav?

Fig. 75. Dependence of the

function F3 on x2 - nv2 for

Ny, = 0O and 6 = O,

Pigure 73 shows a plot of the function F3 vs. the angle 6 rt_u' X =
= Af0*Y = 1,5; &a = O, Figure 75 shows a plot of F3 as & function of
x2 - nva. when a = nwv2 = 0 and 6 = O, If the injector is placed half-
way between the sectors, then in the Brookhaven accelerator 'Vopt will
change during the process of injection* from 0 to O. 5°. If the beam
has a small angle scatter, of the order of several minutes, then ;he
particles will be captured only during a small fraction of the time of
the injection process (i.e., the process when the orbit is constricted
from the injector to the center of the accelerating chamber). This
phenomenon can be avoided by placing the end of the injector in the
middle of some sector, preferably in the middle of the sector where

n, < 0. Indeed, at any azimuth we have

()
Y Ty >0 when zu. <Rt

oF; (0)
b) <0 when xuw > Regt.

Case "b" is realized for the radial oscillations, and case "a" for the
vertical oscillationa, Consequently, the amplitude of the vertical os-
cillations 1is minimal if &( 91) is minimal, and the amplitude of the
radial oscillations is minimal when 0(61) is maximal. This is precisely
the situatlion in the middle of the sector where n, <0,

In practice, it becomes necessary to forego prolonged injection

in strong-focuaing accelerators. The particle is captured in the accel-
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eration mode only during one particle revolution.
§4. Azimuthal Asymmetry
If the magnetic field along the equilibrium radius depends on the
agimuth © .
0O H(R,: @)mH,(RYI1+h(6)) (41)
then, as 1s well known, in first approximation the equations (4) as-

sume the form
1"+ 3(8) 7 = —RA(6), (42).
whesre

' (8) < 4 in focusing sectors
#(6)=| _3 in defocusing sectors.

Iet us consider the Sturm-Liouville equation
X"+ [ (8) + Al =0, (43) ‘
Iet us find the eigenfunctions and the eigenvalues A from the con-
dition of the periodicity of the solutions '
1O)=7@2=); 2 (0)=7y (2=h
We can use the general solution obtained in §2 if we make evex:ywhcro
the following substitution:
deealti; Beed—i,

The periodicity conditions stipulate that p = 2vk, 1.e.,

€08 =008 2vk == cos \Vxi 4 Ny ch V£ = Ay — (44)
_Apsinvat - A - shVai— Ay
EEH '
vhere
Ay = (vg - Rgp) B,
£ == V;‘o ( us)

Solving the transcendental equation (44) we obtain the spectrum
of the eigenvalueé xk

For the case A, << 1 and x° < 12 we obtain approximately with the
aid of Formulas (18) or (11') a total of 'N values of A:
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== gy - An, sin® vk - ney ==
[ 1 2 (46)

When v = O the cigenvqlm' =\, §08s over into the ordinary denominator ')
in the Pourier coefficients of the distortion of the equilibrium orbit
M=k -1+n,.

In ordinary accelerators an important role is played by the smallest
value xl In our case other smallest xk play an appreciable role.

We have obtalned only N eigenvalues. The others are obtained from
(44) graphically. However, they are large and therefore play a small
role.

Whereas the first group of N values of A, corresponds to the
branch cos i p= l on Fig. 70, the second group of N values of )’k will
correspond to the branch cos o = -1l on Pig. 71, etc.

The periodic solution of the initial equation can be written in

the form

it | bW @G
7 (M) =N, N :'- -‘-'--——-—'— “ (8, (I‘?)

a|m o RV

where ¥,(€) is the eigenfunction of Eq. (43). As can be seen from (47),
an important role is played in this series only by the terms where xi
is small. The vanishing of A, occurs at certain resonant values of n.
Obviously, n should be chosen halfway between the successive resonant
values. .

We note that we are considering here only the firat-order reso-
nances, corresponding in an ordinary accelerator to the vanishing of p.
Parametric resonance sets in also under the indicated valuss of n and
furthermore halfway between them. There exists 2lso a large mumber of

linear and nonlinear resonances. For their analysis it is most con- \)
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venlent to use the method of averaging difference equations, developed
in Chapter 4. Calculation shows that as & rule one cannot go through
the resonance and that it is necessary to choose and maintain dwring

the acceleration process nonresonant values of n. The presence of many

| strong resonances produces specifio dAiffioulties in the ommocm

of a strong-focusing accelerator.

Without. carrying out detailed calculatiopa, we have explained why
the presence of resonances greatly increases the demands on the accu-
racy with which strong-focusing accelerators must be built. 'l‘ho inven-
tors of strong focusing did not call attention in their papers to the
possibility of resonances, so that their preliminary ui;imates were
too optimistic. They chose by way of an accelerator example an accel-
erator with very large n = Noyo at which value the accelerator will
obviously not operate. We were the first to call attention, in 1952,
to the role of the resonances.

Putting Ngp = 0, we obtain for v2 << 1 the resonant values of n,s

v
sinvk= —'— .

5
e

If n, =~ 6/v2, which corresponds to the optimal values of n, then

N . vz
km=T; smvlr,m =—;‘-—,

where 2N 1s the total number of all the sectors. In this region, the

neighboring resonant® values are located at distances

any=mpy —n="0; My, (48)

The largest value of llc in the resonance region will be obtained by as-
suning that n = n, + (Ank/n). In this case

(49)

Thus, Xk assumes a rather large valud :_Ln the interval between

LN

¥~

resonances. For example, for the Brookhaven accelerator we obtain
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However, inasmuch as the distance between the resonances is on the or-
dar of v, this méans ﬁhlt‘g must be held constant to an acouracy muck
higher than 2.58. In this case the amplitude of the corresponding "har-
monic" in (47) must not exceed 0.1%, since the distortion of the orbit
will amount to 1 om even at this value of the asymmetry, i.e., 208 of
the working region at the start of acceleration and S0% of the working
region at the end of acceleration. If we take into account the pres-
ence of other resonances, the accuracy requirements imposed on the in-
dex n should be increased by a factor of several times.

In the accelerator whose parameters were given in the original
paper by Livingston, Courant, and Snyder an important role will be
played by the asymmetry harmonics in the region k = 30. The firat har-
monics, unlike ordinary accelerators, are immaterial.

when work on the investigation of resonances becams lnown in 1953,
it became necessary to decrease appreciably the focusing so as to re-
duce the role of the resonances, and the index n had to be decreased
by almost 10 times. In this case the significant harmonics turn out to
be the eighth to the twelfth. ‘

The dapa given above are sufficient for a rough estimate of the
influence of the asymmetry.

A more detailled investigation of the azimuthal asymmetry and of
other perturbing phenomena, as well as the calculation of the eigen-
functions, are found ln special articles written by many authors.

§5. Instantaneous Orbits

80 far we have not oconsidered the instantaneous ordit situated in
the center of the chapber. The magnetic field at the center of the
chamber does not depend on the aziﬁuth. On circles with other radiil

the magnetic field depends on the azimuth, inasmuch as the magnetic

- & - -
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{leld index has opposite signs in neighboring sectors. Therefore only
one central instantaneous orbit will be circular in form. Let us as-
sune that the particle energy remained constant but the instantaneous
field increased by an amount AHO' = hy = const and let us comidor how
the instantaneous orbit changes if it was at the initial instant in
the center of the chamber.

To solve this problem we can use Eq. (ha), in which we put h(e) =
= hy = const.

We first solve the problem approximately, using the method of the
preceding section. In the present case the only nonvanishing coeffi.
cients in the series expansion (47) of the solution of ﬁq. (42) will
be those of the functions whose mean values do not equal zero
T n(0)- 40 0, (50)

.
Condition (50) will be satisfied if
n=2 2k = 0 - 2=k,
where k and lcl are Integers, i.e.,
k = 0; N; 2N; 3N, etc.

N e i g i o - -

It is easy to obtain the smallest eigenvalue J\o = 'iih, N
Ly igyen. (51)

Neglecting approximately all the eigenfunctions except '&o, we can write

=
@ (%) 4 (6) d}
i ._! {8) % (8)
"/“ Tt TR

{ HIOPS
Inasmuch as 'Wo(e) differs little from a constant, we have

Ryl — R“hﬂ__
P Ty T T Ty (52)

Formula (52) serves as a definition for Ngpt
[}

n.,=1—1.:1—11,,+n,,w—--’—3-(£:-:1——,§7+n,,. (53)'
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The introduced quantity n,, plays the role of the usual n in circular
accelerators in calculations of the shift of the orbit due to changes
in the magnetic field, or in the energy, or in the revolution fre-: O
quency. As can be seen from (53), nye 18 a large negative number.

If the field is constant and the energy changed, then we should
have in the right half of Eq. (42) RyAE/EE2 in place of —Rgh,. Conse-
quently,

=R Ty P - (54)
where E is the total energy of the particle. With the aid of the rela-
tion w, = cf/R and BEq. (54) we readily obtain

: ’"='e~“7;:¥§‘7‘%:7;)_' (55)

Thus, if we mtrodﬁce ngps then all the usual formulas for the
displacement of the orbit retain their previous form.' An accelerator
with variable n behaves upon shift of the orbit essentially like an
accelerator with a constant negative Ngp- This fact will be explained
below.

The problem posed in the present section can be solved exactly.
For this purpose it 1s neceasary elther to sum all the terms of the
series (47)’, or solve the problem anew by the joining method. The lat-
ter way is the simpler one.

We shall seek a solution of (42) with hy = const in the form

. als—=0) |y
e e
in the focusing sectors and
Py = —R 1 0%p - - (|“*:I;)"h':2£" +.ﬁ‘éh_ (57)
in the defocusing sectors. )
- 227 -
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It 1s easy to verify that (56) and (57) are really the solutions
of (42) in the foousing and defocusing sectors for arbitrary values of
p*. The form of the functions (56) and (57) was chosen such as to male
p'l(V) -‘9'2(0) and p'l(o) - p"a(v), where the prime denotes differen-
tiation with respect to the angle 6. The value of the oconstant p* 1is
obtained from the condition

Py(v) = pp(0). ,

The other necessary equation, pl(O) - pa(v), will be satisfied

automatically. We readily obtain that

1)2 oy 2% ot :
. (1 4+ p¥2sh 3+ sin - . (58)
P = = .
va.:l psln%:cl\yﬁ}—lh%:m%:]

It 18 also convenient to bear in mind another form for expressing

p¥:

14 p?) e (1 =€) = pa (1 —cy)
?‘=( £ 2ty (1 = ro8 u) ;J' (59)

Thus, the new instantaneous orbit has a form similar to the en-
velope calculated in §3. The maximum value is |p| .. = |p;(v/2)] and
the minimum lplmin = lpa(v/a)l. The average value p_. is '

Pop=—RJ0* — (1 —p% "_2"::2 . (60)
Prom the definition of Dgp We have

i, -— pt
"l'=—1—-£’—:t=_"ul‘n(.". + “2'—;2,,‘!) .

Consequently,
1 a3

n, =1— —

" Ttpr > e 7
P.+”‘-- .

22
If cos p = O and Ny = O then the exact formula yields
me=1—0,2081n; vWa =73 . (61)
From the approximate formula (53) we obtain N =1~ 0.2056n. We
see from this that the approximate formula is quite convenient for
- 228 -
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Pig. 76. Instantaneous orbits
with radius larger than (I)
and smaller than (II) the av-
erage radius at the center of
the stability region (kv = n/2
and n ., = 0): A) focusing sec-

tor; B) defocusing sector.

practical calculations. In this case, l.e., when cos pu = 0 and Ny = o,

we get
:—;=p..+p..[0-3- 1,1cos (3 ___,2«_‘_)1 (62)
p,=p.,+p.,i:1,2—0.9ch (%—5:-;)]

As can be seen from (62) and from Fig. 76, the shift in the in-
stantaneous orbit p(@) differs at the most from p,. by approximately
20.3 pgpt

. 1P(0) —papley =0:2 popr

It 1s now easy to understand why our formulas for the displace-
ment of the orbit contain not Doy but n,.

Indeed, the average value of the field on a circle shifted from
the central one by an amount Par is determined by the value of n__:

ar
Hy(Ry+ry) =H (R)(1 —292).
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But the particle does not move along a oircic with radius R, + Pap?
but moves on a wavy orbit, defined say by Eqs. (56) and (57) or (62)
and Fig. 76. In both sectors (roculins and defocusing) the Mioh
deviates from a circle with rq.gi\u,(no + pw) toward the direction
where the field deoreanes if Par ° 0 or inoreases if Pgr € 0. Thus, at
large radii (p,,, > 0), the particle moves effectively in much wealker
fields, and at small radii (p'r <0) 1t moves in much stronger fields.
For example, in the case considered above (cos u = 0) the particle de-
viates in the mean from a circle with radius R, + Par by 0.2p.r.' Con-
sequently, the average rield on the orbit is

Hy. (on orbit) =H(lt.)[1—u.,5’,.l-+n°'—mz?‘-l] ,

and n,e = n,,, — 0.2n. Thus, we again obtain Formula (61).

IR I

AN s
ALK AL KL

.J/—-\Ih—/
oz

B RN

Fig. 77. Envelope of the par-
ticle trajectory (I) in the
center of the stability region

(kv = m/2 and ng, = 0) for a

shifted instantaneous orbilt
(II). The average orbit SIII)
is situated at p = ~5: A) foocus-
ing sector; B) defocusing sec-
tor. ‘

The results of §3 remain in force if we measure the displacement
- 230 -
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from the new orbit, and the angles from the direction tangent to this
nev orbit. As a vesult, the form of the envelope becomes distorted.

'm direction of thé optdmal angles of particle emission changs. Fig-

m 77 shows m envelope for the oase when Par and the wum of
the osoillations are approximately equal to each other.

" §6; _The Phase Equation

To derive the 'phase equation it is essential to know how the rev-
olution period changes with changing particle energy.
' In caloulating the length of the particle trajectory it is pos-
sible to replace the instantanecus wave-like orbit (see §5) by a oir-
cle with average radius. Thus, upon change in the average radius by
p’r; the length of the orbit increases by 2mp .. The resultant error-
is small. For example, the true increment in the orbit As when cos U =
= 0 lies between the two close limits:

Y
2mp,, < 80 < 27p,, ( 14+0,5 -b-f-,s) .

Neglecting the second-order correction ﬂp.rAE/kae, we obtain a
phase equation which differs from that for an ordinary accelerator in
only one respsct: n 1s replaced everywhere by Ngpe Indeed, as was
shown many times, the phase equation can be derived from the relations:

T—‘HE%T‘ ':f '—V-’?—’-.
where T is the period of revolution, Vo the sum of the voltage ampli-
tudes on all the accelerating electrodes, ¢ is the phase of the elec-
tric field and the 1;mtant of passage through the accelerating gap,

and B{R, t) 1s the average field along the instantaneous orbit with
average radius R, After usual caloulneiom we odbtain the phase egquation

[ ?J g_!cou cl ,cug. , (63)
"bere km=1':'"ﬁ?-'!!~‘v (6“)
- 231 -
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Wo is the frequency of the accelerating electric field;

cvemq,a;hi—':M(1—t)+(i—M)%‘z: (65)
T h :
f[=%—,~, /.l,,-.-m-.
Here Ry is the average radius of the orbit, on which the revolution
frequeincy 1s wy. The quantity & is equal to the ratio of the derivative
of the magnetic flux through the orbit with radius Ro to the quantity

2nRSH(R,, t). ‘

The entire difference between the phase equation (63) and the or-
dinary equation lies in the value of K,,. In the nonrelativistic ‘case
(g2 ~ o, Ingel >> 1] we nave

Ku=—54<0,

where W is the kinetic energy. In the relativistic case [(1 — az) <«
<< Vinge|1 we have

» ]
A..:_-l _nw>0‘

Thus, for a certain energy Bkr the coefficient Kef vanishes:
E..=E.Vi— ";‘ =E.‘i":~:§ .
If we choose n and v such as to make coap.-Oandn‘r-o, then

E.,=45VaE,=13F, (66)

As was already pointed out by us [10], when kop < O the stable
phasing point is the phase —g, (on the rising portion of the accelerat-
ing voltage), and the unstable phase ia 9o When the sign of k,. re-
verses, +9, and -% interchange their roles. The unstable phase 1is R0
and the stable one +Pge *

Equation (63), as is well known, 1s the equation of the pendulum
with "effective mass" mg, = E/ugkef. At the start of the iocelention
process the "effective mass" of the pendulum has a negative value. This

- 232 -
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means that in the present case any instability point becomes stable

for positive "mass" and vice versa. As the acceleration increases, the

absolute value of the "effective mass" of the pendulum increases. This

‘csuses the oscillation frequency to decrease and to tend to sero when

tha totnl particlc onor;y tends to a value ‘kr' Simultaneously, th01
amplt;udpu of the phase oscillations become rather strongly attenuated.
Consequently, ﬂpon the particles reach energies Ekr’ all the pcrticlo
phaloi freeze in place, 80 to speak, in the region of the point'-oo.

Owing to the small value of the phase velocity, the swing of the

radial-phase osc;llationa increases strongly, since the averaging of
the particle energy occurs only over the period of the phase oscilla-
tions, which 1s very long. With further increase in energy, the par-
ticles gradually begin to move. Those particles which were in the sta-
bllity region, begin to execute rather large phase oscillations about
a new equilibrium point +9g- At the same time, inasmuch as the "effec-
tive mass" of the pendulum, which has become positive, decreases
strongly, the amplitudes of the phase oscillations, which are large
enough as it 1s,build up strongly.

The indifferent equilibrium position of the pendulum involves, as
the :ngggy.increaaes to Ekr’ additional hidden dangers connected with
various perturbations, which can cause strong particle losses owing to
the absence of a potential well for the pendulum. ‘

It is therefore desirable to have the maximum energy for a given
accelerator lower thﬁn Ekr' or else to get rid completely of the re-
alignment of the phase region with the aid of special sectors with mag-
netioc flelds direocted opposite to the main field,

If this cannot be done for some reason, it 1s necessary to change
at the corresponding instant of tiﬁe the phase of the accelerating
field by 2¢0. Inasmuch as the frequency of the phase oscillations 1s
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very small at that instant, the change in phase can be carried out euf-
‘fiolensly slowly. ‘ o LR
" In addition, as will be wmm below, it is nooum-y that ‘the
rete of change of the energy be large: gtthst muntofthi.‘ ‘
uummmwmo:mnnmmmma.um
&’ in the frequency shifts the equilibrium radius of the orbit by an '_
- smount 4R, with

R Ty = TR (67) .

The thor in the right half of (67) is large if (1 — be) >» i/n‘f
This means that at low ehergies larger deviations of the frequency from
the exact law are permissible. However, later on the denominator of
(67) decreases and vanishes when E = B, The ohange in the radius of
the orbit at that point is determined by the value of h“/&t. In any
case, the requirements imposed oﬁ the accuracy of the frequency during
that period will be exceedingly high. But even before that, when the
denominator is equal to —10, the accuracy with which the m@my is
to be maintained in the Brookhaven accelerator should be much lower
than 0.1%. We denote the energy at which the denominator of (67) is

equal to —k by Bk:

Bav/1 = ny E
E.=‘.°_\.L..."2.t=..=.£={. (68)
A plot of the function ny, + 6%(1 ~ ny,) 1s shown in Pig. 78.

The radial dimension 2p of the separatrix separating the stable
oscillations from the unstable motion is, as is well known,

z;:—.zﬂ..‘/__“‘_-:‘_‘.‘ﬂ.‘_:him_ (69)

TLE3 Ry o B (1 = Rg)i(} = Ang)
in the nonrelativistic case we have

z,;-_ln“ll/'_f_'.l'_‘“_‘h%m_.h_!h

Por example, at energy "1 = 4 Mev and evo sin % = :LO5 eV, Bo "~
- 234 -
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~ 10 om, and n e = =740, we obtain .‘ql
, 55 =-2.50m ,
- A’ the opom tnoreases, the sise .i* )
<of the up@wrix first dncroun. and M
increases, ‘so that when E = :h, 1t becomes
-infinite. The fact that the separatrix be-
cemes 1iAnfinite in size still means nothing,
since the frequency of the phase oscilla-
o tions vanishes at the same time. However,
Fig. 78, Dependence of the rate of change of energy must be suffi-

e * (1 - nyp) on ciently large, or else particles may be
”t%btgr tgou t . 1 . h ing the in
res ost near the energy ow to -
erargy X, (ngs = ~7TA0). - e

_ crease in the radial-phase oaoilhtloni.
For example, at an energy
By Byt |0 Wi,
where ’1 is the injection ‘energy, the sige of the upcratri; will be
equal to its size at the start of acceleration.
Let us oconsider small phase oscillationqn. Their amplitude Oax’
as is well lnown, varies in proportion to llfl-:;s

PRy v e (10)

This formula is valid only away from the energy 'h-' since near
Bh' the adiabaticity condition

y —;;‘5,*«. | . (n)
is not satisfied, where w, 1s the frequency of the small phase o.oilh-

tions

“1=% V Xrl'.

In calculating the change in the amplitude of the oscillations in W
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the region of E, . it is necessary to use other methods, and in partice
ular, the answer may be obtained by the method which uses Airy func-
tions. '

The amplitude p, of the emall radial-phase oscillations is

7":-- \/WF-.. +¢‘l’AH-: 8 QJT = Rgg) "

Thus, the amplitude of the radial-phase oscillations changes in

.

proportion to

ly-l"u""’("":wm"“h .

Consequently, the amplitude of the radial-phase ogcillationl first
decreases rapidly and then, in the region of Ekr’ increases.

A'more detailed investigation of the phase equation in the region
of E,., has been the subject of many recent papers [21].

In 1953 the author, together with A.A. Kolomenskiy and V.A. Petu-
khov, has shown that it is possible to build a strong-focusing system
without a critical energy. In particular, there is no oritical energy
in one of the versions of the annular synchrocyclotron.

Prom the discussions given above it follows that there is no corit-
ical energy if k of does not reverse sign. Inasmuch as k%r is negative
at sufficiently low energies and large Ngps it should be negative also
when £2 = 1. This 1s possible if n,, > 1.

A large positive Ngp denotes that in the given magnetic field the
particles with the higher energy move along an orbit with a smaller
perimeter. It is particularly convenient to change the perimetpr in
the desired direction by introducing sectors in which the magnetic
field has an opposite direction.

This problem is treated in the papers by A.A. Kolomenskiy [25],
V.V. Viadimirskiy and Ye.K. Tarasov [31].'In particular, the latter
was able to find the most effective variants for the elimination of
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the oritical energy, wherein the porturb:l.nc sectors with oppoliuly
directed fields are ;.nnulhd with a period which 1s approxmtoly
equal to the perdod of the free oscillations.

Namu- .
;::.‘" (Footnotes ] . v
No. )

214 Inasmuch as we are not considering the linear sections here,

it is convenient to introduce the angle 6 in place of the
dimensionless length o.
221 The change in ¥ opt auring the injection process will actu-

ally be even hrgar if one talkes into account the form of
the displaced instantaneous orbit, as was done in §5.

224 In the general case ‘-:‘-"‘l*' . the maximum value of
"k in the resonance region is . e
.7 (B
230 This quality is obtained ave n?. ne of the expressions

in the square brackets in (62).

Manu-

script [List of Transliterated Symbols]
Page

Ro.

221 CP = sr = gredniy = averesge

21k HAY = nach = nachal'nyy = initial

21k OPT = opt = optimal'nyy = optimal

224 . Pe? = res = resonansnyy = resonant

226 KP = kr = kriticheskiy = critical

226 80 = ef = effektivnyy = effective

A\]
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